Jiantao Yao, Wenlan Liu, Yundou Xu, Lijian Li, Jianjun Li, and Yongsheng Zhao


  1. [1] J. Tlusty, J. Ziegert, S. Ridgeway, Fundamental comparison of the use of serial and parallelkinematics for machine tools, CIRP Annals-Manufacturing Technology, 48(1), 1999, 351−356.
  2. [2] T. Brogardh, Present and future robot control development-An industrial perspective, AnnualReviews in Control, 31(1), 2007, 69−79.
  3. [3] J.P. Merlet, Parallel Robots, Solid mechanics & its applications, 128, 2010, 2091−2127.
  4. [4] C. Gosselin, Stiffness mapping for parallel manipulators, IEEE Transactions on Robotics andAutomation, 6(3), 1990, 377−382.
  5. [5] C.M. Gosselin, D. Zhang, Stiffness analysis of parallel mechanisms using a lumped model,International Journal of Robotics and Automation, 17(1), 2002, 17−27.
  6. [6] B.S. EI-Khasawneh, P.M. Ferreira, Computation of stiffness and stiffness bounds for parallel linkmanipulators, International Journal of Machine Tools and Manufacture, 39(2), 1999, 321−342.
  7. [7] N. Simaan, M. Shoham, Stiffness synthesis of a variable geometry six-degrees-of-freedom doubleplanar parallel robot, International Journal of Robotics Research, 22(9), 2003, 757−775.
  8. [8] Y.Y. Wang, H.T. Liu, T. Huang, et. al., Stiffness modeling of the tricept robot using the overalljacobian matrix, Journal of Mechanisms and Robotics,1(2), 2009, 1−8.
  9. [9] Y.M. Li, Q.S. Xu, Stiffness analysis for a 3-PUU parallel kinematic machine, Mechanism andMachine Theory, 43(2), 2008, 186−200.
  10. [10] Q.S. Xu, Y.M. Li, An investigation on mobility and stiffness of a 3-DOF translational parallelmanipulator via screw theory, Robotics and Computer-Integrated Manufacturing, 24(3), 2008,402−414.
  11. [11] H.T. Liu, Y.G. Li, T. Huang, et. al., An approach for stiffness modelling of lower mobilityparallel manipulators using the generalized Jacobian, 13th World Congress in Mechanism andMachine Science, Guanajuato, México, 2011, 19−25 June.
  12. [12] Q. Zeng, K.F. Ehmann, J. Cao, Tri-pyramid robot: stiffness modeling of a 3-DOF translationalparallel manipulator, Robotica, 34(2), 2016, 383−402.
  13. [13] Y. Lu, J.J. Yu, L.W. Chen, et. al., Stiffness and elastic deformation of a 3-leg 5-dof parallelmanipulator with one composite leg, International Journal of Robotics and Automation, 29(1),2014, 23−31.
  14. [14] B. Hu, S. Zhuang, Y. Lu, et. al., Kinematics, statics and stiffness analysis of n(4-SPS+SP)S-PM, International Journal of Robotics and Automation, 27(3), 2012, 287−297.
  15. [15] B. Hu, B.Y. Mao, J.J. Yu, et. al., Unified stiffness model of lower mobility parallel manipulatorswith linear active legs, International Journal of Robotics and Automation, 29(1), 2014, 58−66.
  16. [16] T. Huang, X.Y. Zhao, D.J. Whitehouse, Stiffness estimation of a Tripod-based parallelkinematic machine, IEEE Transaction on Robotics and Automation, 18(1), 2002, 50−58.
  17. [17] H.T. Liu, T. Huang, D.G. Chetwynd, et. al., Stiffness modeling of parallel mechanisms at limband joint/link levels, IEEE Transactions on Robotics, 33(3), 2017, 734−741.
  18. [18] S.J. Yan, S.K. Ong, A.Y.C. Nee, Stiffness analysis of parallelogram-type parallel manipulatorsusing a strain energy method, Robotics and Computer-Integrated Manufacturing, 37, 2016,13−22.
  19. [19] G.L. Wu, P. Zou, Stiffness analysis and comparison of a Biglide parallel grinder with alternativespatial modular parallelograms, Robotica, 35(6), 2017, 1310−1326.
  20. [20] A.B.K. Rao, S.K. Saha, P.V.M. Rao, Stiffness analysis of hexaslide machine tools, AdvancedRobotics, 19(6), 2005, 671−693.
  21. [21] J. Wu, T.M. Li, J.S. Wang, et. al., Stiffness and natural frequency of a 3-DOF parallelmanipulator with consideration of additional leg candidates, Robotics and Autonomous Systems,61(8), 2013, 868−875
  22. [22] J. Zhang, Y.Q. Zhao, J.S. Dai, Compliance modeling and analysis of a 3-RPS parallel kinematicmachine module, Chinese Journal of Mechanical Engineering (English Edition), 27(4), 2014,703−713.
  23. [23] M. Ceccarelli, G. Carbone, A stiffness analysis for CaPaMan (Cassino Parallel Manipulator),Mechanism and Machine Theory, 37(5), 2002, 427−439.
  24. [24] D. Zhang, On stiffness improvement of the Tricept machine tool, Robotica, 23(3), 2005,377−386.
  25. [25] H.P. Shin, D.H. Lee, A new decoupling method for explicit stiffness analysis of kinematicallyredundant planar parallel kinematic mechanism, Mathematical Problems in Engineering, 2015,2015, 1−11.
  26. [26] H.S. Kim, H. Lipkin, Stiffness of parallel manipulators with serially connected legs, Journal ofMechanisms and Robotics, 6(3), 2014, 031001.
  27. [27] T. Sun, B.B. Lian, Y.M. Song, Stiffness analysis of a 2-DoF over-constrained RPM with anarticulated traveling platform, Mechanism and Machine Theory, 96, 2016, 165−178.
  28. [28] A. Pashkevich, D. Chablat, P. Wenger, Stiffness analysis of overconstrained parallelmanipulators, Mechanism and Machine Theory, 44(5), 2009, 966−982.
  29. [29] V. Rocco, P.C. Vincenzo, Static and stiffness analyses of a class of over-constrained parallelmanipulators with legs of type US and UPS, Proceeding-IEEE International Conference onRobotics and Automation, Roma, Italy, 2007, 561−567.
  30. [30] A. Pashkevich, A. Klimchik, D. Chablat, Enhanced stiffness modeling of manipulators withpassive joints, Mechanism and Machine Theory, 46(5), 2011, 662−679.
  31. [31] M. Griffis, J. Duffy, Global stiffness modeling of a class of simple compliant couplings,Mechanism and Machine Theory, 28(2), 1993, 207−224.
  32. [32] J. Kövecses, J. Angeles, The stiffness matrix in elastically articulated rigid-body systems,Multibody System Dynamics, 18(2), 2007, 169−184.
  33. [33] B.B. Lian, T. Sun, Y.M. Song, et. al., Stiffness analysis and experiment of a novel 5-DoFparallel kinematic machine considering gravitational effects, International Journal of MachineTools and Manufacture, 95, 2015, 82−96.
  34. [34] A. Klimchik, D. Chablat, A. Pashkevich, Stiffness modeling for perfect and non-perfect parallelmanipulators under internal and external loadings, Mechanism and Machine Theory, 79, 2014,1−28.
  35. [35] L.E. Bruzzone, R.M. Molfino, A geometric definition of rotational stiffness and dampingapplied to impedance control of parallel robots, International Journal of Robotics andAutomation, 21(3), 2006, 197−205.
  36. [36] D. Serre, Matrices: Theory and Applications, Springer-Verlag New York Inc, 2002.

Important Links:

Go Back