Waseem Abbasi, Fazal ur Rehman, Ibrahim Shah, and Arshad Rauf


  1. [1] E. Mohammadpour and M. Naraghi, “Robust adaptive tracking and regulation of wheeledmobile robots violating kinematic constraint,” International Journal of Robotics and Automation, vol. 25, no. 4, p. 323, 2010.
  2. [2] D. Gu and H. Hu, “Receding horizon tracking control of wheeled mobile robots,” ControlSystems Technology, IEEE Transactions on, vol. 14, no. 4, pp. 743–749, 2006.
  3. [3] W. E. Dixon, Z.-P. Jiang, and D. M. Dawson, “Global exponential setpoint control of wheeledmobile robots: a lyapunov approach,” Automatica, vol. 36, no. 11, pp. 1741–1746, 2000.
  4. [4] Y. Tian, N. Sidek, and N. Sarkar, “Modeling and control of a nonholonomic wheeled mobilerobot with wheel slip dynamics,” in 2009 IEEE Symposium on Computational Intelligence inControl and Automation. IEEE, 2009, pp. 7–14.
  5. [5] W. Abbasi, F. urRehman, and I. Shah, “Backstepping based nonlinear adaptive control for theextended nonholonomic double integrator,” Kybernetika, vol. 53, no. 4, pp. 578–594, 2017.
  6. [6] K. Kherraz, M. Hamerlain, and N. Achour, “Robust neuro-fuzzy sliding mode controller for aflexible robot manipulator,” International Journal of Robotics and Automation, vol. 30, no. 1,2015.
  7. [7] G. Xia, A. Zhao, H. Wu, and J. Liu, “Adaptive robust output feedback trajectory tracking control for ships with input nonlinearities,” International Journal of Robotics and Automation,vol. 31, no. 4, 2016.
  8. [8] G. Oriolo, A. De Luca, and M. Vendittelli, “Wmr control via dynamic feedback linearization:design, implementation, and experimental validation,” Control Systems Technology, IEEETransactions on, vol. 10, no. 6, pp. 835–852, 2002.
  9. [9] M. Asif, M. J. Khan, and N. Cai, “Adaptive sliding mode dynamic controller with integrator inthe loop for nonholonomic wheeled mobile robot trajectory tracking,” International Journalof Control, vol. 87, no. 5, pp. 964–975, 2014.
  10. [10] R. W. Brockett et al., Asymptotic stability and feedback stabilization. Defense TechnicalInformation Center Virginia, 1983.
  11. [11] A. Astolfi, “Discontinuous control of nonholonomic systems,” Systems & control letters,vol. 27, no. 1, pp. 37–45, 1996.
  12. [12] P. Morin and C. Samson, “Control of nonlinear chained systems: From the routh-hurwitzstability criterion to time-varying exponential stabilizers,” Automatic Control, IEEE Transactions on, vol. 45, no. 1, pp. 141–146, 2000.
  13. [13] S. Islam, X. P. Liu, and A. El Saddik, “Adaptive sliding mode control of unmanned four rotorflying vehicle,” International Journal of Robotics and Automation, vol. 30, no. 2, 2015.
  14. [14] P. R. Ouyang, W. Yue, and V. Pano, “Hybrid pd sliding mode control for robotic manipula-tors,” International Journal of Robotics and Automation, vol. 29, no. 4, 2014.
  15. [15] A. K. Khalaji and S. A. A. Moosavian, “Switching control of a tractor-trailer wheeled robot,”International Journal of Robotics and Automation, vol. 30, no. 2, 2015.
  16. [16] A. Ferrara, L. Giacomini, and C. Vecchio, “Control of nonholonomic systems with uncertain-ties via second-order sliding modes,” International Journal of Robust and Nonlinear Control,vol. 18, no. 4-5, pp. 515–528, 2008.
  17. [17] W. Abbasi et al., “Adaptive integral sliding mode stabilization of nonholonomic drift-freesystems,” Mathematical Problems in Engineering, 2016.
  18. [18] Q. Khan, A. I. Bhatti, S. Iqbal, and M. Iqbal, “Dynamic integral sliding mode for mimo un-certain nonlinear systems,” International Journal of Control, Automation and Systems, vol. 9,no. 1, pp. 151–160, 2011.
  19. [19] Q. Khan, R. Akmeliawati, A. I. Bhatti, and M. A. Khan, “Robust stabilization of underactuated nonlinear systems: A fast terminal sliding mode approach,” ISA transactions, 2016.
  20. [20] M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “Integral sliding mode control fortrajectory tracking of a unicycle type mobile robot,” Integrated Computer-Aided Engineering,vol. 13, no. 3, pp. 277–288, 2006.
  21. [21] F. Rehman, M. Ahmed, and N. Ahmed, “Steering control algorithm for drift-free controlsystems using model decomposition: a wheeled mobile robot of type (1, 1) example,” Inter-national Journal of Robotics & Automation, vol. 22, no. 4, p. 313, 2007.
  22. [22] F.-u. Rehman, “Feedback stabilization of nonholonomic control systems using model decom-position,” Asian Journal of Control, vol. 7, no. 3, pp. 256–265, 2005.

Important Links:

Go Back