A TWO-LAYER CASCADING METHOD FOR DROPOUT PREDICTION IN MOOC

Bowei Hong, Zhiqiang Wei, and Yongquan Yang

References

  1. [1]. Dewan, M Ali Akber, Fuhua Lin, Dunwei Wen, and Kinshuk. “Predicting Dropout-Prone Students inE-Learning Education System.” In Uic-Atc-Scalcom-Cbdcom-Iop, 1735–40, 2015.
  2. [2]. Harasim, Linda. “Shift Happens: Online Education as a New Paradigm in Learning.” The Internet andHigher Education 3, no. 1–2 (2000): 41–61. doi:http://dx.doi.org/10.1016/S1096-7516(00)00032-4.
  3. [3]. Swan, Karen. “Building Learning Communities in Online Courses: The Importance of Interaction.”Education, Communication & Information 2, no. 1 (2002): 23–49.doi:10.1080/1463631022000005016.
  4. [4]. Väljataga, Terje, Hans Põldoja, and Mart Laanpere. “Open Online Courses: Responding to DesignChallenges.” Stanford University, H-STAR Institute, USA; to Associate Professor Jukka M.Laitam{ä}ki, from New York University, USA, and to Professor Yngve Troye Nordkvelle fromLillehammer University, 2011, 68.
  5. [5]. Tekin, Cem, and Mihaela van der Schaar. “eTutor: Online Learning for Personalized Education.”arXiv Preprint arXiv:1410.3617, 2014.
  6. [6]. Shah., Dhawal. “By The Numbers: MOOCS in 2016.” Class Central, 2016.https://www.class-central.com/report/mooc-stats-2016/.
  7. [7]. Brinton, Christopher G., and Mung Chiang. “Social Learning Networks: A Brief Survey.” 2014 48thAnnual Conference on Information Sciences and Systems (CISS), 2014, 1–6.doi:10.1109/CISS.2014.6814139.
  8. [8]. Yuan, Li, and Stephen Powell. “MOOCs and Open Education: Implications for Higher Education.”Centre for Educational Technology & Interoperability Standards 4, no. 4 (2013): 206–7.
  9. [9]. Hmelosilver, Cindy E, and Howard S Barrows. “Goals and Strategies of a Problem-Based LearningFacilitator.” 1, no. 1 (2006): 21–39.
  10. [10]. Hmelo-Silver, C E, C P Rosé, and J Levy. “Fostering a Learning Community in MOOCs,” 2014.
  11. [11]. Koller, Daphne, and Andrew Ng. “The Online Revolution: Education at Scale.” L Education,2012.
  12. [12]. Brinton, C G, R Rill, Sangtae Ha, Mung Chiang, R Smith, and W Ju. “Individualization forEducation at Scale: MIIC Design and Preliminary Evaluation.” Learning Technologies, IEEETransactions on 8, no. 1 (2015): 136–48. doi:10.1109/TLT.2014.2370635.
  13. [13]. Zhao, C, J Yang, J Liang, C Li, Lvfryhu Hduqlqj, Hkdylru Wr, Pdlo Kdrff, Xvwe Hgx, F QDqjmldq, and V Xvwe Hgx. “Discover Learning Behavior Patterns to Predict Certification.” In 201611th International Conference on Computer Science Education (ICCSE), 69–73, 2016.doi:10.1109/ICCSE.2016.7581557.
  14. [14]. Liang, Jiajun, Chao Li, and Li Zheng. “Machine Learning Application in MOOCs: DropoutPrediction.” In 2016 11th International Conference on Computer Science Education (ICCSE), 52–57,2016. doi:10.1109/ICCSE.2016.7581554.
  15. [15]. Kloft, Marius, Felix Stiehler, Zhilin Zheng, and Niels Pinkwart. “Predicting MOOC Dropoutover Weeks Using Machine Learning Methods.” In EMNLP 2014 Workshop on Analysis of LargeScale Social Interaction in Moocs, 60–65, 2014.
  16. [16]. Rose, Carolyn, George Siemens, and Carolyn P Rosé. “Shared Task on Prediction of DropoutOver Time in Massively Open Online Courses.” In EMNLP 2014 Workshop on Analysis of LargeScale Social Interaction in Moocs, 39–41, 2014.
  17. [17]. Cohen, Anat, and Udi Shimony. “Dropout Prediction in a Massive Open Online Course UsingLearning Analytics.” In E-Learn, 2016.
  18. [18]. Halawa, S, D Greene, and J Mitchell. “Dropout Prediction in Moocs Using Learner ActivityFeatures,” 2014.
  19. [19]. Hong, Wenxing, Siting Zheng, and Huan Wang. “Dynamic Recommendation in E-RecruitmentSystem.” Control and Intelligent Systems 42, no. 1 (2014): 3–8.
  20. [20]. Piech, Chris, Jonathan Huang, Zhenghao Chen, Chuong Do, Andrew Ng, and Daphne Koller.“Tuned Models of Peer Assessment in MOOCs.” Computer Science, 2013.
  21. [21]. Yang, Diyi, Tanmay Sinha, David Adamson, and Carolyn Penstein Rose. “‘Turn On, Tune In,Drop Out’: Anticipating Student Dropouts in Massive Open Online Courses.” In NIPS Workshop onData Driven Education, 2013.
  22. [22]. Cheng, Justin, Chinmay Kulkarni, and Scott Klemmer. “Tools for Predicting Drop-off in LargeOnline Classes.” CSCW ’13 Proceedings of the 2013 Conference on Computer SupportedCooperative Work Companion, 2013, 121–24. doi:10.1145/2441955.2441987.
  23. [23]. Vleeshouwers, J.M.a M, G.W.a Dekker, M.b Pechenizkiy, and J.M.a M Vleeshouwers.“Predicting Students Drop out : A Case Study.” International Working Group on Educational DataMining, no. March 2017 (2009): 41–50. doi:doi:10.1037/0893-3200.21.3.344.
  24. [24]. Balakrishnan, and Girish Eecs. “Predicting Student Retention in Massive Open Online CoursesUsing Hidden Markov Models,” 2013.
  25. [25]. Kittler, Josef, Mohamad Hatef, Robert P W Duin, and Jiri Matas. “On Combining Classifiers.”IEEE Transactions on Pattern Analysis and Machine Intelligence 20, no. 3 (1998): 226–39.
  26. [26]. Liaw, Andy, and Matthew Wiener. “Classification and Regression by randomForest.” R News 2,no. 3 (2002): 18–22. http://cran.r-project.org/doc/Rnews/.
  27. [27]. Chang, Chih-Chung, and Chih-Jen Lin. “{LIBSVM}: A Library for Support Vector Machines.”ACM Transactions on Intelligent Systems and Technology 2, no. 3 (2011): 27:1--27:27.
  28. [28]. Dobson, Annette J. “An Introduction to Generalized Linear Models.” Technometrics 98, no. 464(2001): 1086–87.
  29. [29]. Breiman, L. “Random Forest.” Machine Learning 45 (2001): 5–32.
  30. [30]. Cortes, Corinna, and Vladimir Vapnik. “Support-Vector Networks.” Machine Learning 20, no. 3(1995): 273–97.
  31. [31]. Harper, F Maxwell, Daniel Moy, and Joseph A Konstan. “Facts or Friends?: DistinguishingInformational and Conversational Questions in Social Q&A Sites.” In Proceedings of theSIGCHI Conference on Human Factors in Computing Systems, 759–68. CHI ’09. New York, NY,USA, NY, USA: ACM, 2009. doi:10.1145/1518701.1518819.
  32. [32]. Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. “SMOTE:Synthetic Minority over-Sampling Technique.” Journal of Artificial Intelligence Research 16, no. 1(2002): 321–57. doi:10.1613/jair.953.
  33. [33]. XuetangX. “KDD Cup 2015 - Predicting Dropouts in MOOC.” Biendata.com, 2015.https://kddcup2015.com/competition/kddcup2015/.

Important Links:

Go Back