Zhu Qiguang, Peng Yingchun, Yuan Mei, and Chen Weidong


  1. [1] C. Ulas and H. Temeltas, Feature-based 3D outdoor SLAM withlocal filters, International Journal of Robotics & Automation,28(3), 2013, 226–233.
  2. [2] X. Wang and H. Zhang, A UPF-UKF framework for SLAM,Proc. 2007 IEEE Conf. on Robotics and Automation, Roma,Italy, 2007, 1664–1669.
  3. [3] B.P. Larouche and Z.H. Zhu, Position-based visual servoinginrobotic capture of moving target enhanced by Kalman filter,International Journal of Robotics & Automation, 30(3), 2015,267–277.
  4. [4] R. Eustice, M. Walter, and J. Leonard, Sparse extendedinformation filters: Insights into sparsification, IEEE/RSJInt. Conf. on Intelligent Robots and Systems, Edmonton, AB,Canada, 2005, 641–648.
  5. [5] S.J. Julier and J.K. Uhlmann, Unscented filtering and nonlinearestimation, Proceedings of the IEEE, 92(3), 2004, 401–422.
  6. [6] C. Kim, R. Sakthivel, and W.K. Chung, Unscented FastSLAM:A robust and efficient solution to the SLAM problem, IEEETransactions on Robotics, 24(4), 2008, 808–820.
  7. [7] I. Arasaratnam and H. Simon, Cubature Kalman filters, IEEETransactions on Automatic Control, 54(6), 2009, 1254–1269.
  8. [8] B.C. Kumar Pakki, D.W. Gu, and I. Postlethwaite, CubatureKalman filter based localization and mapping, Proceedings ofthe 18th IFAC World Congress, 18(1), 2011, 2121–2125.
  9. [9] Y.F. Kang, Y.D. Song, Y. Song, et al., Square-root cubatureKalman filter and its application to SLAM of an mobile robot,Robot, 35(2), 2013, 186–193.
  10. [10] B.C. Kumar Pakki, D.W. Gu, and I. Postlethwaite, A cubatureH∞ filter and its square-root version, International Journal ofControl, 87(4), 2014, 764–776.
  11. [11] K.P.B. Chandra, D.W. Gu, and I. Postlethwaite, A cubaturefilter and its square-root version, International Journal ofControl, 87(4), 2014, 764–776.
  12. [12] G. Sibley, G.S. Sukhatme, and L. Matthies, The iterated sigmapoint Kalman filter with applications to long range stereo, Proc.Second Robotics: Science and Systems Conf., Philadelphia,2006, 16–19.
  13. [13] R.M. Eustice, H. Singh, J.J. Leonard, et al., Visually mappingthe RMS titanic: Conservative covariance estimates for SLAMinformation filters, International Journal of Robotics Research,25(12), 2006, 1223–1242.
  14. [14] D. Labarre, E. Grivel, M. Najim, and N. Christov, DualH∞ algorithms for signal processing—Application to speechenhancement, IEEE Transactions on Signal Processing, 55(11),2007, 5195–5208.
  15. [15] X.M. Shen and L. Deng, A dynamic system approach tospeech enhancement using the H∞ filtering algorithm, IEEETransactions on Speech and Audio Processing, 7(4), 1999,391–399.
  16. [16] F. Mart´ın and L. Moreno, et al., Initial population sizeestimation for a differential evolution-based global localizationfilter, International Journal of Robotics & Automation, 29(3),2014, 245–258.
  17. [17] H.J. Wang, G.X. Fu, et al., SRCKF based simultaneouslocalization and mapping of mobile robots, Robot, 35(2), 2013,200–207.
  18. [18] W. Wu, X. Wang, D. Xu, et al., Position and orientation measurement for autonomous aerial refueling based on monocularvision, International Journal of Robotics & Automation, 32(1),2017, 13–21.
  19. [19] T. Bailey, SLAM simulations, http://wwwpersonal.acfr.usyd.edu.au/tbailey/software/slam_simulations.htm.
  20. [20] The University of Sydney, Car park dataset, http://www-personal.acfr.usyd.edu.au/nebot/car_park.htm.

Important Links:

Go Back