Feng Ding, Jian Wang, Jiaqi Ge, and Wenfeng Li


  1. [1] X.Y. Wang, et al., Trajectory tracking control of a hydraulicparallel robot manipulator with lumped disturbance observer,International Journal of Robotics and Automation, 28(2), 2013,103–111.
  2. [2] J. Kim and W. Chung, Efficient placement of beacons forlocalization of mobile robots considering the positional un-certainty distributions, International Journal of Robotics andAutomation, 30(2), 2015, 119–127.
  3. [3] P. He and S. Dai, Real-time stealth corridor path planning forfleets of unmanned aerial vehicles in low-altitude penetration,International Journal of Robotics and Automation, 30(1), 2015,60–69.
  4. [4] C.-C. Chen, et al., A framework of barcode localization for mo-bile robots, International Journal of Robotics and Automation,28(4), 2013, 317–330.
  5. [5] Z. Fu, W. Hu, and T. Tan, Similarity based vehicle trajectoryclustering and anomaly detection, Proc. IEEE Conf. on ImageProcessing, Genova, Italy, 2005, II-602-5.
  6. [6] C. Piciarelli, C. Micheloni, and G.L. Foresti, Trajectory-basedanomalous event detection, IEEE Transactions on Circuitsand Systems for Video Technology, 18(11), 2008, 1544–1554.
  7. [7] P. Claudio and G.L. Foresti, On-line trajectory clusteringfor anomalous events detection, Pattern Recognition Letters,27(15), 2006, 1835–1842.
  8. [8] L. Rikard and G. Falkman, Online learning and sequentialanomaly detection in trajectories, IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 36(6), 2014, 1158–1173.
  9. [9] Y. Zheng, et al., Mining interesting locations and travel se-quences from GPS trajectories, Proc. 18th international Conf.on World Wide Web, ACM, Madrid, Spain, 2009, 791–800.
  10. [10] Y. Zheng, Trajectory data mining: An overview, ACM Trans-actions on Intelligent Systems and Technology, 6(3), 2015,29.
  11. [11] P.-R. Lei, A framework for anomaly detection in maritimetrajectory behaviour, Knowledge and Information Systems,47 (1), 2015, 1–26.
  12. [12] L. Ssebazza and Y.-J. Pan, DGPS-based localization andpath following approach for outdoor wheeled mobile robots,International Journal of Robotics and Automation, 30 (1),2015, 13–25.
  13. [13] T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: Aneffective data clustering method for very large database, Proc.ACM SIGMOD International Conf. on Management of Data,Montreal, Canada, 1996.
  14. [14] S. Guha, R. Rastogi, and K. Shim, CURE: An efficientclustering algorithm for large databases, Information Systems,26 (1), 1998, 35–58.
  15. [15] J.G. Lee, J. Han, and K. Whang, Trajectory clustering: Apartition-and-group framework, Proc. ACM SIGMOD Inter-national Conf. on Management of Data, ACM, Beijing, China,2007, 593–604.
  16. [16] Y. Ge, et al., Top-eye: Top-k evolving trajectory outlierdetection, Proc. 19th ACM international Conf. on Informationand knowledge management, Toronto, Canada, 2010, 1733–1736.
  17. [17] X. Li, J. Han, and S. Kim, Motion-alert: Automaticanomaly detection in massive moving objects, Intelligenceand Security Informatics, Springer, Berlin, Heidelberg, 2006,166–177.
  18. [18] N.H. Park and W.S. Lee, Statistical grid-based clusteringover data streams, ACM SIGMOD Record, 33(1), 2004,32–37.
  19. [19] A. Amini, et al., A study of density-grid based clusteringalgorithms on data streams, Proc. 8th IEEE Conf. on FuzzySystems and Knowledge Discovery, Shanghai, China, 2011,1652–1656.
  20. [20] M.R. Ilango and V. Mohan, A survey of grid based clusteringalgorithms, International Journal of Engineering Science andTechnology, 2(8), 2010, 3441–3446.
  21. [21] J. Zhu, et al., Merging grid maps via point set registration,International Journal of Robotics and Automation, 28 (2),2013, 180–191.
  22. [22] S. Saeedi, et al., Occupancy grid map merging for multiplerobot simultaneous localization and mapping, InternationalJournal of Robotics and Automation, 30(2), 2015, 149–157.
  23. [23] B.P. DeJong, Two-and three-dimensional auditory occupancygrids with a mobile robot, International Journal of Roboticsand Automation, 29 (1), 2014, 14–22.
  24. [24] C.C. Robusto, The cosine-haversine formula, The AmericanMathematical Monthly, 64(1), 1957, 38–40.
  25. [25] M.P. Dubuisson and A.K. Jain, A modified Hausdorff dis-tance for object matching, Proc. 12th IAPR InternationalConf. on Pattern Recognition, IEEE, Jerusalem, Israel, 1994,566–568.
  26. [26] Z. Zhang, K. Huang, and T. Tan, Comparison of similar-ity measures for trajectory clustering in outdoor surveillancescenes, Proc. 18th Conf. on Pattern Recognition, Vol. 3, IEEE,Hong Kong, China, 2006.
  27. [27] W.H. Day and H. Edelsbrunner, Efficient algorithms for ag-glomerative hierarchical clustering methods, Journal of Clas-sification, 1(1), 1984, 7–24.
  28. [28] I. Davidson and S.S. Ravi, Agglomerative hierarchical cluster-ing with constraints: Theoretical and empirical results, Proc.ACM Conf. on Knowledge Discovery in Databases, Springer,Berlin, Heidelberg, 2005, 59–70.
  29. [29] Y. Zhao and K. George, Evaluation of hierarchical clusteringalgorithms for document datasets, Proc. 11th Conf. on Infor-mation and Knowledge Management, ACM, Virginia, USA,2002, 515–524.
  30. [30] F. Murtagh and C. Pedro, Algorithms for hierarchical clus-tering: An overview, Wiley Interdisciplinary Reviews: DataMining and Knowledge Discovery, 2(1), 2012, 86–97.
  31. [31] Y. Zheng, H. Fu, X. Xie, W.-Y. Ma and Li, Q. Geolife GPStrajectory dataset – User Guide, Geolife GPS trajectories 1.1,2011.
  32. [32] Y. Zheng, X. Xing and W.-Y. Ma, GeoLife: A collaborativesocial networking service among user, location and trajectory,IEEE Data Engineering Bulletin, 33(2), 2010, 32–39.
  33. [33] B. Li, B. Hou, W. Yu, et al., Applications of artificial in-telligence in intelligent manufacturing: A review, Frontiersof Information Technology & Electronic Engineering, 18(1),2017, 86–96.
  34. [34] J.Y. Zhuang, et al., Personalized topic modeling for rec-ommending user-generated content, Frontiers of InformationTechnology & Electronic Engineering, 18(5), 2017, 708–718.
  35. [35] J.A. Rincon, J. Bajo, A. Fernandez, et al., Using emotionsfor the development of human-agent societies, Frontiers ofInformation Technology & Electronic Engineering, 17(4), 2016,325–337.
  36. [36] B. Ju, Y. Qian, and M. Ye, Preference transfer model incollaborative filtering for implicit data, Frontiers of Infor-mation Technology & Electronic Engineering, 17(6), 2016,489–500.
  37. [37] G. Song, X. Jin, G. Chen, et al., Two-level hierarchicalfeature learning for image classification, Frontiers of Infor-mation Technology & Electronic Engineering, 17(9), 2016,897–906.

Important Links:

Go Back