Ruibiao J. Guo, Brad Cain, and Joe Armstrong


  1. [1] B. Cain, Simulated Operators for Networks (SimON) pilotmodel, Internal Communication, DRDC Toronto, Toronto,2009.
  2. [2] L.E. Magee, Exploratory use of VR technologies for traininghelicopter deck-landing skills, Proc. of the NATO RTO HFMWorkshop on “The Capability of Virtual Reality to MeetMilitary Requirements (RTO MP-54) , Orlando, FL, 1997.
  3. [3] R.J. Guo, B. Cain, and P. Meunier, Knowledge representationsupporting-multiple reasoning methods for simulated opera-tors, Proc. of the 2005 Conference on Behavior Representationin Modeling and Simulation (BRIMS2005), Universal City,CA, May 16–19, 2005.
  4. [4] R.J. Guo, B. Cain, and P. Meunier, Representing uncertainty incomputer-generated forces, International Journal of Computerand Information Science and Engineering, 2(2), 2008, 90–95.
  5. [5] R.J. Guo, B. Cain, and J. Armstrong, Modelling pilot behaviourfor flight control in a helicopter deck landing simulator, Controland Intelligent Systems, 41(4), 2013, 197–202.
  6. [6] S. Bunnett, A brief history of automatic control, IEEE ControlSystem Magazine, 16(3), 1996, 17–25.
  7. [7] I.B.G. Manuaba, M. Abdillah, A. Priyadi, and M.H. Purnomo,Coordinated tuning of PID-based PSS and AVR using bacte-rial foraging-PSOTVAC-DE algorithm, Control and IntelligentSystems, 43(3), 2015, 125–133.
  8. [8] K.S. Tang, D.F. Man, G. Chen, and S. Kwong, An optimal fuzzyPID controller, IEEE Transactions on Industrial Electronics,48(4), 2001, 757–765.
  9. [9] L.A. Zadeh, Fuzzy sets, Information and Control, 8, 1965,338–353.
  10. [10] M. Mizumoto, Realization of PID controls by fuzzy controlmethods, in IEEE (ed.), Proc. First Int. Conf. on FuzzySystems, number 92CH3073-4 (San Diego, CA: The Instituteof Electrical and Electronics Engineers, Inc., 1992), 709–715.
  11. [11] W. Qiao and M. Mizumoto, PID type fuzzy controller andparameters adaptive method, Fuzzy Sets and Systems, 78,1996, 23–35.
  12. [12] S.K. Tso and Y.H. Fung, Methodological development offuzzy-logic controllers from multivariable linear control, IEEETransactions on Systems, Man & Cybernetics, 27(3), 1997,566–572.
  13. [13] K.S. Saji and M. Sakikumar, Tuning employing fuzzy andANFIS for a pH process, Control and Intelligent Systems,40 (2), 2012, 95–101.
  14. [14] L.C. Smith, Fundamentals of control theory, Chemical Engineering, 86(22), 1979, 11–39.
  15. [15] H.J. Astrom and T. Hagglund, PID controllers – theory, design,and tuning, 2nd ed. (Research Triangle Park, NC: InstrumentSociety of America, 1995), 230–270.
  16. [16] J. Jantzen, Tuning of fuzzy PID controller, Technical Report#98-H871, Department of Automation, Technical University of Denmark, 1998, http://andrei.clubcisco.ro/cursuri/f/f-sym/4si/Tuning%20Of%20Fuzzy%20PID%20Controllers.pdf(accessed Mar. 8, 2017).
  17. [17] V. Chopra, S.K. Singla, and L. Dewan, Comparative analysisof tuning of PID controller using intelligent methods, ActaPolytechnica Hungarica, 11(8), 2014, 235–249.

Important Links:

Go Back