ROTOR FAULT DETECTION OF WIND TURBINE SQUIRREL CAGE INDUCTION GENERATOR USING TEAGER–KAISER ENERGY OPERATOR

Lahc`ne Noureddine,∗ Ahmed Hafaifa,∗ and Kouzou Abdellah∗ e

References

  1. [1] H. Teager, Some observations on oral air flow during phona-tion, IEEE Transactions on Acoustics, Speech, and SignalProcessing, 28(5), 1980, 599–601.
  2. [2] P. Maragos, J.F. Kaiser, and T.F. Quatieri, Energy separationin signal modulations with application to speech analysis, IEEETransactions on Signal Processing, 41(10), 1993, 3024–3051.
  3. [3] M.O. Mustafa, G. Nikolakopoulos, T. Gustafsson, andD. Kominiak, A fault detection scheme based on minimumidentified uncertainty bounds violation for broken rotor barsin induction motors, Control Engineering Practice, 48, 2016,63–77.
  4. [4] B. Deepan, C. Quan, and C.J. Tay, Determination of phasederivatives from a single fringe pattern using Teager HilbertHuang transform, Optics Communications, 359, 2016, 162–170.
  5. [5] A. Boudraa, J.-C. Cexus, and K. Abed-Meraim, CrossΨB-energy operator-based signal detection, The Journal ofthe Acoustical Society of America, 123(6), 2008, 4283–4289.
  6. [6] D. Dimitriadis, P. Maragos, and A. Potamianos, AuditoryTeager energy spectrum coefficients for robust speech recogni-tion, INTERSPEECH, 2005.
  7. [7] A.C. Bovik, P. Maragos, and T.F. Quatieri, AM–FM energydetection and separation in noise using multiband energyoperators, IEEE Transactions on Signal Processing, 41(12),1993, 3245–3265.
  8. [8] L.B. Fertig and J.H. McClellan, Instantaneous frequency esti-mation using linear prediction with comparisons to the DESAs,IEEE Signal Processing Letters, 3(2), 1996, 54–56.
  9. [9] M.O. Mustafa, D. Varagnolo, G. Nikolakopoulos, andT. Gustafsson, Detecting broken rotor bars in inductionmotors with model-based support vector classifiers, ControlEngineering Practice, 52, 2016, 15–23.
  10. [10] D. Dimitriadis and P. Maragos, Continuous energy demod-ulation methods and application to speech analysis, SpeechCommunication, 48(7), 2006, 819–837.
  11. [11] D. Dimitriadis, P. Maragos, and A. Potamianos, Robust AM–FM features for speech recognition, IEEE Signal ProcessingLetters, 12(9), 2005, 621–624.
  12. [12] M.Y. Kaikaa, M. Hadjami, and A. Khezzar, Effects of the si-multaneous presence of static eccentricity and broken rotor barson the stator current of induction machine, IEEE Transactionson Industrial Electronics, 61(5), 2014, 2452–2463.
  13. [13] J.F. Kaiser, On a simple algorithm to calculate the energy ofa signal, 1990 Int. Conf. Acoustics, Speech, and Signal Pro-cessing, 1990, ICASSP-90, IEEE, Albuquerque, New Mexico,USA, 1990, 381–384.
  14. [14] I. Kokkinos, G. Evangelopoulos, and P. Maragos, Textureanalysis and segmentation using modulation features, genera-tive models, and weighted curve evolution, IEEE Transactionson Pattern Analysis and Machine Intelligence, 31(1), 2009,142–157.
  15. [15] Y. Imaouchen, M. Kedadouche, R. Alkama, and M. Thomas,A frequency-weighted energy operator and complementary en-semble empirical mode decomposition for bearing fault de-tection, Mechanical Systems and Signal Processing, 82, 2016,103–116.
  16. [16] A. Potamianos and P. Maragos, Speech formant frequencyand bandwidth tracking using multiband energy demodulation,The Journal of the Acoustical Society of America, 99(6), 1996,3795–3806.
  17. [17] A. Soualhi, G. Clerc, and H. Razik, Detection and diagnosis offaults in induction motor using an improved artificial ant clus-tering technique, IEEE Transactions on Industrial Electronics,60(9), 2013, 4053–4062.
  18. [18] B. Santhanam and P. Maragos, Multicomponent AM–FMdemodulation via periodicity-based algebraic separation andenergy-based demodulation, IEEE Transactions on Commu-nications, 48(3), 2000, 473–490.
  19. [19] Y.-H. Kim, Y.-W. Youn, D.-H. Hwang, J.-H. Sun, and D.-S.Kang, High-resolution parameter estimation method to identifybroken rotor bar faults in induction motors, IEEE Transactionson Industrial Electronics, 60(9), 2013, 4103–4117.
  20. [20] Z. Alnasir and M. Kazerani, A small-scale standalone windenergy conversion system featuring SCIG, CSI and a novelstorage integration scheme, Renewable Energy, 89, 2016,360–370.
  21. [21] A. Bellini, A. Yazidi, F. Fillippetti, C. Rossi, and G.-A.Capolino, High frequency resolution techniques for rotor faultdetection of induction machines, IEEE Transactions on Indus-trial Electronics, 55(12), 2008, 4200–4209.
  22. [22] B. Bessam, A. Menacer, M. Boumehraz, and H. Cherif, Detec-tion of broken rotor bar faults in induction motor at low loadusing neural network, ISA Transactions, 64, 2016, 241–246.17
  23. [23] X. Boqiang, L. Heming, and S. Liling, Sensitive and reliabledetection of broken rotor bar fault in induction motors, 39thIAS Annual Meeting on Industry Applications Conference,2004,Conference Record of the 2004 IEEE, Vol. 2, IEEE,Seattle, USA, 2004.
  24. [24] A. Bouzida, O. Touhami, R. Ibtiouen, A. Belouchrani,M. Fadel, and A. Rezzoug, Fault diagnosis in industrialinduction machines through discrete wavelet transform, IEEETransactions on Industrial Electronics, 58(9), 2011, 4385–4395.
  25. [25] A.C. Bovik, J.P. Havlicek, M.D. Desai, and D.S. Harding,Limits on discrete modulated signals, IEEE Transactions onSignal Processing, 45(4), 1997, 867–879.
  26. [26] J.G. Cardoso, I.R.S. Casella, A.J. Sguarezi Filho, F.F. Costa,and C.E. Capovilla, SCIG wind turbine wireless controlledusing morphological filtering for power quality enhancement,Renewable Energy, 92, 2016, 303–311.
  27. [27] D. Camarena-Martinez, C.A. Perez-Ramirez, M. Valtierra-Rodriguez, J.P. Amezquita-Sanchez, and R. de Jesus Romero-Troncoso, Synchrosqueezing transform-based methodology forbroken rotor bars detection in induction motors, Measurement,90, 2016, 519–525.
  28. [28] Y. Gritli, C. Rossi, L. Zarri, F. Filippetti, A. Chatti, andD. Casadei, Double frequency sliding and wavelet analysis forrotor fault diagnosis in induction motors under time-varyingoperating condition, 2011 IEEE International Symposium onDiagnostics for Electric Machines, Power Electronics & Drives(SDEMPED), IEEE, Bologna, Italy, 2011.
  29. [29] P. Maragos and A.C. Bovik, Image demodulation using mul-tidimensional energy separation, JOSA A, 12(9), 1995, 1867–1876.
  30. [30] M. Petros, J.F. Kaiser, and T.F. Quatieri, On amplitudeand frequency demodulation using energy operators, IEEETransactions on Signal Processing, 41(4), 1993, 1532–1550.
  31. [31] M.Q. Duong, F. Grimaccia, S. Leva, M. Mussetta, andE. Ogliari, Pitch angle control using hybrid controller for alloperating regions of SCIG wind turbine system, RenewableEnergy, 70, 2014, 197–203.
  32. [32] A. Potamianos and P. Maragos, A comparison of the energyoperator and the Hilbert transform approach to signal andspeech demodulation, Signal Processing, 37(1), 1994, 95–120.
  33. [33] C.S. Ramalingam, On the equivalence of DESA-1a and Prony’smethod when the signal is a sinusoid, IEEE Signal ProcessingLetters, 3(5), 1996, 141–143.
  34. [34] N. Lahc`ene, A. Hafaifa, A. Kouzou, M. Guemana, and S.Abudura, Detecting rotor faults of SCIG based wind turbineusing PSD estimation methods, Proceding of IEEE 8th Inter-national Conference on Modelling, Identification and Control(ICMIC), 2016, 566–572, DOI: 10.1109/ICMIC.2016.7804176.
  35. [35] L. Noureddine and O. Touhami, Diagnosis of wind energysystem faults part I : Modeling of the squirrel cage induc-tion generator, International Journal of Advanced ComputerScience and Applications, 6(8), 2015, 46–53.

Important Links:

Go Back