Yuta Tsuge, Tatsuo Narikiyo, and Michihiro Kawanishi


  1. [1] M.S. De Queiroz, D.M. Dawson, S.P. Nagarkatti, and F. Zhang, Lyapunov based control of mechanical systems (Boston: Birkhauser, 2000).
  2. [2] M. Kristic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and adaptive control design (New York, NY: John Wiley & Sons, 1995).
  3. [3] S. Sastry, Nonlinear systems: analysis, stability, and control (New York, NY: Springer, 1999).
  4. [4] H.G. Kwatny and G. Blankenship, Nonlinear control andanalytical mechanics: a computational approach (Boston:Birkhauser, 2000).
  5. [5] A. van der Schaft, L2-gain and passivity techniques in nonlinear control (London: Springer, 2000).
  6. [6] G. Chesi, LMI techniques for optimization over polynomials in control: a survey, IEEE Transactions on Automatic Control, 55(11), 2010, 2500–2510.
  7. [7] H. Ichihara, Sum of squares based input-to-state stability analysis of polynomial nonlinear systems, SICE Journal of Control, Measurement, and System Integration, 5, 2012, 218–225.
  8. [8] G. Chesi, Estimating the domain of attraction for uncertain polynomial systems, Automatica, 40(11), 2004, 1981–1986.
  9. [9] C. Ebenbauer, J. Renz, and F. Allgower, Polynomial feedback and observer design using non-quadratic Lyapunov functions, Proc. 44th IEEE Conf. on Decision and Control, Seville, Spain, 2005, 7587–7592.
  10. [10] T. Jennawasin, M. Kawanishi, and T. Narikiyo, Stabilization of polynomial systems with bounded actuators using convex optimization, Proc. 18th IFAC World Congress, Milano, Italy, 2011, 6745–6750.
  11. [11] A. Papachristodoulou and S. Prajna, Analysis of non-polynomial systems using the sum of squares decomposition(Berlin/Heidelberg: Springer, 2005).
  12. [12] G. Chesi, Estimating the domain of attraction for non-polynomial systems via LMI optimizations, Automatica, 45(6), 2009, 1536–1541.
  13. [13] H. Ichihara, A descriptor system approach to estimating domain of attraction for non-polynomial systems via LMI optimizations, Proc. American Control Conference,San Francisco, USA, 2011, 1299–1304.
  14. [14] J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of the IEEE International Conference on Neural Network, 4(4), Perth, Western Australia, 1995, 1942–1948.
  15. [15] G. Venter and J. Sobieszczanski-Sobieski, A parallel particle swarm optimization algorithm accelerated by asynchronous evaluations, Proc. 6th World Congress of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 2005, 1–10.
  16. [16] B. Koh, A.D. George, T.T. Haftka, and B.J. Fregley,Parallel asynchronous particle swarm optimization, Interna-tional Journal for Numerical Methods in Engineering, 67(4),2006, 578–595.
  17. [17] Y. Tsuge, M. Kawanishi, T. Narikiyo, and T. Jennawasin, Nonlinear controller design based on polynomial and non-polynomial representation, Proc. 11th IEEE International Conference on Control and Automation, Taichung, Taiwan, 2014, 831–838.
  18. [18] Y. Tsuge, T. Jennawasin, T. Narikiyo, and M. Kawanishi, Nonlinear control of partially known systems based on polynomial representation and reinforcement learning, IEEJ Transactions on Electronics, Information and Systems, 135(2), 2015, 215–224.
  19. [19] R. Hassan, B. Cohanim, and O. de Weck, A comparisonof particle optimization and the genetic algorithm, Proc.46th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics and Materials Conference, Austin, USA, 2005, 1–13.
  20. [20] Z. Al-Hamouz, S.F. Faial, and S. Al-Sharif, Application of particle swarm optimization algorithm for optimal reactive power planning, Control and Intelligent Systems, 35(1), 2007, 66–72.
  21. [21] M.I. Solihin, R. Akmeliawati, I.B. Tijani, and A. Legowo, Robust state feedback control design via PSO-based constrained optimization, Control and Intelligent Systems, 39(3), 2011, 168–178.
  22. [22] J.F. Schutte, J.A. Reinbolt, B.J. Fregly, R.T. Haftka, and A.D. George, Parallel global optimization with the particle swarm algorithm, International Journal for Numerical Methods in Engineering, 61(13), 2004, 2296–2315.

Important Links:

Go Back