João Rodrigues, Alexandre Andrade


  1. [1] K. J. Friston, “Functional and effectiveconnectivity in neuroimaging: A synthesis,”Human Brain Mapping, vol. 2, no. 1-2, pp. 56-78,1994.
  2. [2] C. W. J. Granger, “Investigating Causal Relationsby Econometric Models and Cross-spectralMethods,” Econometrica, vol. 37, no. 3, p. 424,Aug. 1969.
  3. [3] S. L. Bressler and A. K. Seth, “Wiener-GrangerCausality: A well established methodology.,”NeuroImage, Mar. 2010.
  4. [4] G. Deshpande, K. Sathian, and X. Hu, “Effect ofhemodynamic variability on Granger causalityanalysis of fMRI.,” NeuroImage, vol. 52, no. 3,pp. 884-896, Dec. 2009.164
  5. [5] J. Geweke, “Measurement of linear dependenceand feedback between multiple time series.,”Journal of the American Statistical Association,vol. 77, pp. 304-313, 1982.
  6. [6] M. Kamiński, M. Ding, W. a Truccolo, and S. L.Bressler, “Evaluating causal relations in neuralsystems: Granger causality, directed transferfunction and statistical assessment ofsignificance,” Biological Cybernetics, vol. 85, no.2, pp. 145-157, Aug. 2001.
  7. [7] L. a Baccalá and K. Sameshima, “Partial directedcoherence: a new concept in neural structuredetermination.,” Biological cybernetics, vol. 84,no. 6, pp. 463-74, Jun. 2001.
  8. [8] S. Guo, A. K. Seth, K. M. Kendrick, C. Zhou, andJ. Feng, “Partial Granger causality--eliminatingexogenous inputs and latent variables.,” Journalof neuroscience methods, vol. 172, no. 1, pp. 79-93, Jul. 2008.
  9. [9] J. F. Geweke, “Measures of Conditional LinearDependence and Feedback Between Time Series,”Journal of the American Statistical Association,vol. 79, no. 388, p. 907, 1984.
  10. [10] Y. Chen, S. L. Bressler, and M. Ding, “Frequencydecomposition of conditional Granger causalityand application to multivariate neural fieldpotential data.,” Journal of neuroscience methods,vol. 150, no. 2, pp. 228-37, Jan. 2006.
  11. [11] N. E. Huang et al., “The empirical modedecomposition and the Hilbert spectrum fornonlinear and non-stationary time series analysis,”Proceedings of the Royal Society A:Mathematical, Physical and EngineeringSciences, vol. 454, no. 1971, pp. 903-995, Mar.1998.
  12. [12] H. Liang, S. L. Bressler, E. a Buffalo, R.Desimone, and P. Fries, “Empirical modedecomposition of field potentials from macaqueV4 in visual spatial attention.,” Biologicalcybernetics, vol. 92, no. 6, pp. 380-92, Jun. 2005.
  13. [13] Z. Wu and N. E. Huang, “Ensemble EmpiricalMode Decomposition: a Noise-Assisted DataAnalysis Method,” Advances in Adaptive DataAnalysis, vol. 1, no. 1, p. 1, 2009.
  14. [14] P. Flandrin, G. Rilling, and P. Goncalves,“Empirical Mode Decomposition as a FilterBank,” IEEE Signal Processing Letters, vol. 11,no. 2, pp. 112-114, 2004.
  15. [15] M. Morf, A. Vieira, D. L. Lee, and T. Kailath,“Recursive Multichannel Maximum EntropySpectral Estimation,” IEEE Transactions onGeoscience Electronics, vol. 16, no. 2, pp. 85-94,Apr. 1978.
  16. [16] J. Cui, L. Xu, S. L. Bressler, M. Ding, and H.Liang, “BSMART: a Matlab/C toolbox foranalysis of multichannel neural time series.,”Neural networks : the official journal of theInternational Neural Network Society, vol. 21, no.8, pp. 1094-104, Oct. 2008.
  17. [17] H. Akaike, “A new look at the statistical modelidentification,” IEEE Transactions on AutomaticControl, vol. 19, no. 6, pp. 716-723, 1974.
  18. [18] M. Dhamala, G. Rangarajan, and M. Ding,“Analyzing information flow in brain networkswith nonparametric Granger causality.,”NeuroImage, vol. 41, no. 2, pp. 354-62, Jun.2008.
  19. [19] S. M. Smith et al., “Network Modelling Methodsfor FMRI,” NeuroImage, vol. 54, pp. 875-891,Sep. 2010.

Important Links:

Go Back