Ahmad Al Nabulsi , Lutz Angermann , Omar Abdallah, Armin Bolz


  1. [1] K. A. A. Abdallah and A. Bolz. Towards Noninva-sive Monitoring of Total Hemoglobin Concentrationand Fractional Oxygen Saturation Based on EarlobePulse, volume 22. 2009.
  2. [2] A. D. Akrivis and A. Karakashian. On fully discreteGalerkin methods of second-order temporal accuracyfor the nonlinear Schriidinger equation. Springer, 1990.
  3. [3] S. H. Bonner, R. Nossal and G. Weiss. Model for pho-ton migration in turbid biological media. Journal of theOptical Society of America A, 4:423–432, 1987.
  4. [4] S. H. Dayan and G. H. Weiss. Photon migration in atwo-layer turbid medium a diffusion analysis. MOD-ERN OPTICS,, 39(7), 1992.
  5. [5] J. J. Duderstadt and L. J. Hamilton. Nuclear reactoranalysis. Ph.D. dissertation, 1976.
  6. [6] A. Ern and J.-L. Guermond. Theory and practice of fi-nite elements, volume 159 of Applied Mathematical Sci-ences. Springer, New York, 2004.
  7. [7] C. Großmann and H.-G. Roos. Numerik partieller Dif-ferentialgleichungen (3. Aufl.). B. G. Teubner, Wies-baden, 2005.
  8. [8] R. A. Hielscher and R. Barbour. Comparison of finite-difference transport and diffusion calculations for pho-ton migration in homogeneous and heterogeneous tis-sues, volume 43 of Texts in Applied Mathematics. 1998.
  9. [9] A. Ishimaru. Diffusion approximation wave propaga-tion and scattering in random. Academic,, pages 175–190, 1978.
  10. [10] P. Knabner and L. Angermann. Numerical methods forelliptic and parabolic partial differential equations, vol-ume 44 of Texts in Applied Mathematics. Springer, NewYork, 2002.
  11. [11] S. Larsson and V. Thom´ee. Partial differential equationswith numerical methods, volume 45 of Texts in AppliedMathematics. Springer, Berlin, 2003.
  12. [12] S. D. B. Martelli, A. Sassaroli and G. Zaccanti. Solutionof the time-dependent diffusion equation for a three-layer medium: application to study photon migrationthrough a simplified adult head model. 2007.
  13. [13] G. X. Z. Schmitt and E. C. Walker. Multilayer model ofphoton diffusion in skin. Opt. Soc. Am. A, 7(11), 1990.
  14. [14] S. C. B. L. R. Scott. The mathematical theory of finiteelement methods, volume 15 of Texts in Applied Mathe-matics. Springer, New York, 1994.
  15. [15] V. Thom´ee. Galerkin finite element methods forparabolic problems, volume 25 of Springer Series inComputational Mathematics. Springer, Berlin, 1997.
  16. [16] D. Volz. Modeling of light propagation in skin, and anapplication to noninvasive diagnostics. Ph.D. disserta-tion, 2002.

Important Links:

Go Back