Suchada Tantisatirapong, Nigel P. Davies, Lawrence Abernethy, Dorothee P. Auer, Chris A. Clark, Richard Grundy, Tim Jaspan, Darren Hargrave, Lesley MacPherson, Martin O. Leach, Geoff S. Payne, Barry L. Pizer, Andrew C. Peet, Theodoros N. Arvanitis


  1. [1] J.A. Calvar, F.J. Meli, C. Romero, M.L.C.P. Yánez, A.R.Martinez, H. Lambre, A.L. Taratuto, & G. Sevlever,Characterization of brain tumors by MRS, DWI and Ki-67labeling index, Journal of Neuro-Oncology, 72(3), 2005,273-280.
  2. [2] G. Pavlisa, M. Rados, G. Pavlisa, L. Pavic, K. Potocki,& D. Mayer, The differences of water diffusion betweenbrain tissue infiltrated by tumor and peritumoral vasogenicedema, Clinical Imaging, 33(2), 2009, 96-101.
  3. [3] S. Price, R. Jena, N. Burnet, T. Carpenter, J. Pickard, & J.Gillard, Predicting patterns of glioma recurrence usingdiffusion tensor imaging. European Radiology, 17(7), 2007,1675-1684.
  4. [4] P. Andrey, T. Boudier, Adaptive Active Contours,ImageJ Conference, 2006.
  5. [5] A. Kassner, R.E. Thornhill, Texture analysis: a review ofneurologic MR imaging applications, American Journal ofNeuroradiology, 31 (5), 2010, 809-816.
  6. [6] G. Castellano, L. Bonilha, L.M. Li, F. Cendes, Textureanalysis of medical images, Clinical Radiology, 59(12),2004, 1061-1069.
  7. [7] M.W. Woolrich, S. Jbabdi, B. Patenaude, M. Chappell, S.Makni, T. Behrens, C. Beckmann, M. Jenkinson, S.M.Smith, Bayesian analysis of neuroimaging data in FSL,NeuroImage, 45(1), 2009, 173-186.
  8. [8] S.M. Smith, M. Jenkinson, M.W. Woolrich, C.F.Beckmann, T.E.J. Behrens, H. Johansen-Berg, P.R.Bannister, M. De Luca, I. Drobnjak, D.E. Flitney, R. Niazy,J. Saunders, J. Vickers, Y. Zhang, N. De Stefano, J.M.Brady, and P.M. Matthews, Advances in functional andstructural MR image analysis and implementation as FSL,NeuroImage, 23(1), 2004, 208-219.
  9. [9] S.M. Smith, Fast robust automated brain extraction,Human Brain Mapping, 17(3), 2002, 143-155.
  10. [10] M. Jenkinson, & S.M. Smith, A global optimisationmethod for robust affine registration of brain images,Medical Image Analysis, 5(2), 2001, 143-156.
  11. [11] D. Jayadevappa1, S. Srinivas Kumar2, & D.S. Murty3,A Hybrid Segmentation Model based on Watershed andGradient Vector Flow for the Detection of Brain Tumor,International Journal of Signal Processing, ImageProcessing and Pattern Recognition, 2(3), 2009, 29-42.
  12. [12] I. Dagher, & K. E. Tom, WaterBalloons: A hybridwatershed Balloon Snake segmentation, Image and VisionComputing, 26(7), 2008, 905-912.
  13. [13] X. Chenyang, & J.L. Prince, Gradient vector flow: anew external force for snakes, Proc. IEEE Conf. onComputer Vision and Pattern Recognition, 1997, 66-71.
  14. [14] C. Xu, X. Han, J.L. Prince, N.B. Isaac, & N.B. Isaac,Chapter 10 - Gradient Vector Flow Deformable Models.Handbook of Medical Image Processing and Analysis(Second Edition) (Burlington: Academic Press, 2009), 181-194
  15. [15] T. Cour, F. Benezit, & J. Shi, Spectral segmentationwith multiscale graph decomposition, IEEE on ComputerVision and Pattern Recognition, 2005, 1124-1131.
  16. [16] S. Jianbo, & J. Malik, Normalized cuts and imagesegmentation, Proc. IEEE Conf. on Computer Vision andPattern Recognition, 1997, 731-737.
  17. [17] M.M. Galloway, Texture analysis using gray level runlengths, Computer Graphics and Image Processing, 4(2),1975, 172-179.
  18. [18] J.S. Weszka, C.R. Dyer, & A. Rosenfeld, A comparativestudy of texture measures for terrain classification, IEEETrans. on Systems, Man and Cybernetics, 6(4), 1976, 269-285.
  19. [19] R.W. Conners, & C.A. Harlow, A theoreticalcomparison of texture algorithms, IEEE Trans. on PatternAnalysis and Machine Intelligence, 2(3), 1980, 204–222.
  20. [20] T. Xiaoou, Texture information in run-length matrices,IEEE Trans. on Image Processing, 7(11), 1998, 1602-1609.
  21. [21] R.M. Haralick, K. Shanmugam, & I.H. Dinstein,Textural Features for Image Classification, IEEE Trans. onSystems, Man and Cybernetics, 3(6), 1973, 610-621.
  22. [22] P.M. Szczypinski, M. Strzelecki, A. Materka, A.Klepaczko, MaZda--A software package for image textureanalysis, Computer Methods and Programs in Biomedicine,94(1), 2009, 66-76.
  23. [23] J. Fan, & J. Lv, Sure independence screening forultrahigh dimensional feature space, Journal of the RoyalStatistical Society: Series B (Statistical Methodology), 70(5),2008, 849-911.
  24. [24] C.-C. Chang, & C.-J. Lin, LIBSVM: a library forsupport vector machines, ACM Transactions on IntelligentSystems and Technology, 2(27), 2011,1-27.
  25. [25] L.K. Soh, C. Tsatsoulis, Texture analysis of SAR sea iceimagery using gray level co-occurrence matrices. Geoscienceand Remote Sensing, IEEE Transactions on. 37(2), 1999,780-795.
  26. [26] I. Daubechies, Ten Lectures on Wavelets (RutgersUniversity, New Jersey, 1992).
  27. [27] D.A. Clausi, An analysis of co-occurrence texturestatistics as a function of grey level quantization, CanadianJournal of Remote Sensing, 28(1), 45-62.

Important Links:

Go Back