Galal M. BinMakhashen, Samer M. A. Arafat, and Mary L. Dohrmann

View Full Paper


  1. [1] G. Diamond and J. Forester, "Analysis of Probabilityas an aid in the clinical diagnosis of Coronary-ArteryDisease," New England Journal of Medicine, vol. 300, pp.1350-1358, 1979.
  2. [2] B. Vuksanovic and M. Alhamdi, “ECG based systemfor arrhythmia detection and patient identification,” inProceedings of the ITI 2013 35th InternationalConference on Information Technology Interfaces (ITI),2013, pp. 315–320.
  3. [3] C. Ye, B. V. K. Vijaya Kumar, and M. T. Coimbra,“Combining general multi-class and specific two-classclassifiers for improved customized ECG heartbeatclassification,” in 2012 21st International Conference onPattern Recognition (ICPR), 2012, pp. 2428–2431.
  4. [4] A. Li, S. Wang, H. Zheng, L. Ji, and J. Wu, “A novelabnormal ECG beats detection method,” in 2010 The 2ndInternational Conference on Computer and AutomationEngineering (ICCAE), 2010, vol. 1, pp. 47–51.
  5. [5] J. Malmivuo and R. Plonsey, BioelectromagnetismPrinciples and Applications of Bioelectric andBiomagnetic Fields. Oxford University Press, 1995.
  6. [6] J. A. Scherer and J. L. Willems, “Evaluation of 12-lead ECG synthesis using analysis measurements in 240patients,” in Proceedings of Computers in Cardiology1992, 1992, pp. 91–94.
  7. [7] I. Tomasic and R. Trobec, “Electrocardiographicsystems with reduced numbers of leads - synthesis of the12-lead ECG,” Biomed. Eng. IEEE Rev. In, vol. EarlyAccess Online, 2013.
  8. [8] H. Atoui, J. Fayn, and P. Rubel, “A neural networkapproach for patient-specific 12-lead ECG synthesis inpatient monitoring environments,” in Computers inCardiology, 2004, 2004, pp. 161–164.
  9. [9] F. Agrafioti and D. Hatzinakos, “Fusion of ECGsources for human identification,” in 3rd InternationalSymposium on Communications, Control and SignalProcessing, 2008. ISCCSP 2008, 2008, pp. 1542–1547.
  10. [10]B. R. Greene, G. B. Boylan, R. B. Reilly, P. deChazal, and S. Connolly, “Combination of EEG and ECGfor improved automatic neonatal seizure detection,” Clin.Neurophysiol., vol. 118, no. 6, pp. 1348–1359, Jun. 2007.
  11. [11]W. Deburchgraeve, P. J. Cherian, M. De Vos, R. M.Swarte, J. H. Blok, G. H. Visser, P. Govaert, and S. VanHuffel, “Automated neonatal seizure detection mimickinga human observer reading EEG,” Clin. Neurophysiol.,vol. 119, no. 11, pp. 2447–2454, Nov. 2008.
  12. [12]A. Ross, N. Karthik, and A. K. Jain, Handbook ofMultibiometrics, vol. Vol. 6. Springer Berlin Heidelberg,2006.
  13. [13]M. Arif, I. A. Malagore, and F. A. Afsar, “AutomaticDetection and Localization of Myocardial InfarctionUsing Back Propagation Neural Networks,” in 2010 4thInternational Conference on Bioinformatics andBiomedical Engineering (iCBBE), 2010, pp. 1–4.
  14. [14]E.-S. M. El-Alfy and G. M. BinMakhashen,“Improved Personal Identification Using Face and HandGeometry Fusion and Support Vector Machines,” inNetworked Digital Technologies. Springer BerlinHeidelberg, 2012, pp. 253–261.
  15. [15]V. A. Allen and J. Belina, “ECG data compressionusing the discrete cosine transform (DCT),” inProceedings of Computers in Cardiology 1992, 1992, pp.687–690.
  16. [16]R. J. Martis, U. R. Acharya, and L. C. Min, “ECGbeat classification using PCA, LDA, ICA and DiscreteWavelet Transform,” Biomed. Signal Process. Control,vol. 8, no. 5, pp. 437–448, Sep. 2013.
  17. [17] P. Gokhale, “ECG Signal Denoising using DiscreteWavelet Transform for removal of 50Hz PLI noise, "Int.J. Emerg. Technol. Adv. Eng., vol. 2, no. 5, pp. 81 85,2012.
  18. [18] S. Arafat and M. Skubic, “Modeling FuzzinessMeasures for Best Wavelet Selection,” IEEE Transactionson Fuzzy Systems, October 2008.
  19. [19]J. Bushra, L. Olivier, F. Eric, and B. Ouadi,“Detection of QRS complex in ECG signal based onclassification approach,” in 2010 17th IEEE InternationalConference on Image Processing (ICIP), 2010, pp. 345–348.

Important Links:

Go Back