Dimitrios S. Barbakos, Nikolaos Strimpakos, Stavros A. Karkanis

View Full Paper


  1. [1] A. Hiralwa, N. Uchida and K. Shimohara, “EMGPattern Recognition by Neural Networks forProsthetic Fingers Control”, Annual Review inAutomatic Programming, Vol. 17, 1992, pp. 73-79.
  2. [2] Latwesen, P.E. Patterson, ‘Identification of lowerarm motions using the EMG signals of shouldermuscles”, Medical Engineering & Physics,Vol.16 (2), Mar. 1994, pp. 113-121.
  3. [3] Al-Timemy A.H., Bugmann G., Escudero J.,Outram N., “Classification of Finger Movementsfor the Dexterous Hand Prosthesis Control WithSurface Electromyography”, IEEE Journal of172Biomedical and Health Informatics, vol.17(3),May 2013, pp. 608-618.
  4. [4] Kiatpanichagij K., Afzulpurkar N., “Use ofsupervised discretization with PCA in waveletpacket transformation-based surfaceelectromyogram classification”, BiomedicalSignal Processing and Control, Vol.4(2), Apr.2009, pp. 127-138.
  5. [5] C. Christodoulou and C. S. Pattichis, “A newtechnique for the classification anddecomposition of EMG signals,” in Proc. 1995IEEE Int. Conf. Neural Networks, New York,1995(5), pp. 2303–2308.
  6. [6] Y. H. Huang, K. Englehart, B. S. Hudgins, andA. D. C. Chan, “A Gaussian mixture modelbased classification scheme for myoelectriccontrol of powered upper limb prostheses”,IEEE Trans. Biomed. Eng., vol. 52(11), 2005, pp.1801–1811.
  7. [7] A. D. C. Chan and K. Englehart, “Continuousmyoelectric control for powered prostheses usinghidden Markov models”, IEEE Trans. Biomed.Eng., vol. 52(1), Jan. 2005, pp. 121–124.
  8. [8] F. H. Chan, Y.-S. Yang, F. K. Lam, Y.-T.Zhang, and P. A. Parker, “Fuzzy EMGclassification for prosthesis control”, IEEETrans. Rehabil. Eng., vol. 8(3), Sep. 2000, pp.305–311.
  9. [9] Phinyomark A., Limsakul C., andPhukpattaranont P., “A Novel Feature Extractionfor Robust EMG Pattern Recognition”, Journalof Computing, vol. 1(1), Dec. 2009, pp. 71-80.
  10. [10] Staudenmann D., Kingma I., Stegeman D.F, vanDieën J. H., ‘Towards optimal multi-channelEMG electrode configurations in muscle forceestimation: a high density EMG study”, Journalof Electromyography and Kinesiology, Volume15(1) , Feb. 2005, pp. 1-11.
  11. [11] Staudenmann D., Roeleveld K., Stegeman D.F.,van Dieënemail J.H., “Methodological aspects ofsEMG recordings for force estimation – Atutorial and review”, Journal ofElectromyography and Kinesiology, Volume20(3) , June 2010, pp. 375-387.
  12. [12] Atzori M., Gijsberts A., Heynen S., Mittaz HagerA.-G., Deriaz O., Van der Smagt P., CastelliniC., Caputo B., and Müller H. , “Building theNinaPro Database: a Resource for theBiorobotics Community” IEEE InternationalConference on Biomedical Robotics andBiomechatronics (BioRob), June 2012, pp. 1258-1265.
  13. [13] P. Yang , Q. Li, “Wavelet transform-basedfeature extraction for ultrasonic flaw signalclassification”, Neural Computing &Applications, Volume 24(3-4), pp. 817-826
  14. [14] Y. Meyer, Wavelets: Algorithms and ApplicationSIAM, Philadelphia, 1993.

Important Links:

Go Back