AUTOMATED SEGMENTATION METHODS FOR MICROSCOPIC BLOOD CELLS

Sandy Rihana, Elias Abi Hanna, Jad Charif

View Full Paper

References

  1. [1] Wadsworth Center, New York State Department ofHealth | Science in Pursuit of Health. [Online].Available: http://www.wadsworth.org/. [Accessed:05-Jun-2013].
  2. [2] Ongun, G., Halici U., Leblebicioglu, K. Atalay, V.Beksac, M. & Beksac, S. Feature extraction andclassification of blood cells for an automateddifferential blood count system, Proceedings of theInternational Joint Conference on NeuralNetworks,vol.4,pp. 2461 - 2466, 2001
  3. [3] O. Lezoray, A. Elmoataz, H. Cardot, G. Gougeon, M.Lecluse, H. √Člie, M. Revenu, Segmentation ofCytological Images Using Color and MathematicalMorphology , 7th European conference in seretology,Amsterdam, Hollande, p.52, april 1998.
  4. [4] N. R. Mokhtar, N. H. Harun, M. Y. Mashor, H.Roseline, N. Mustafa, R. Adollah, H. Adilah, and N.M. Nasir, Image enhancement techniques using local,global, bright, dark and partial contrast stretching foracute leukemia images, in Proceedings of the WorldCongress on Engineering, UK, 2009, vol. 1
  5. [5] N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems,Man, and Cybernetics, 9(1), 1979, 62-66.
  6. [6] Soille, P., Morphological Image Analysis: Principlesand Applications, Springer-Verlag, 1999, pp. 173-174
  7. [7] N.H. Mahmood and M.A. Mansor, Red blood cellssegmentation using Hough transform technique,Signal & Image Processing, An International Jounal(SIPIJ), vol.3,No.2, 2012

Important Links:

Go Back