Bingxia Xue, Xin Ma, Haibo Wang, Jason Gu, and Yibin Li


  1. [1] G.B. Huang, Y.Q. Chen, and H. Babri, Classification abilityof single hidden layer feedforward neural networks, IEEETransactions on Neural Networks, 11(3), 2000, 799–801.
  2. [2] G.B. Huang, Q.Y. Zhu, and C.K. Siew, Extreme learningmachine: a new learning scheme of feedforward neural networks,Proc. IEEE International Joint Conf. on Neural Networks,IEEE, 2004, Vol. 2, 985–990.
  3. [3] J. Zhai, H.Y. Xu, and X.Z. Wang, Dynamic ensemble extremelearning machine based on sample entropy, Soft Computing,Springer, 16(9), 2012, 1493–1502.
  4. [4] J. Cao, Z. Lin, G.B. Huang, and N. Liu, Voting based extremelearning machine, Information Sciences, 185(1), 2012, 66–77.
  5. [5] R. Polikar, L. Upda, S. Upda, and V. Honavar, Learn++: Anincremental learning algorithm for supervised neural networks,IEEE Transactions on Systems, Man, and Cybernetics, PartC: Applications and Reviews, 31(4), 2001, 497–508.
  6. [6] J. Platt, A resource-allocating network for function interpola-tion, Neural Computation, 3(2), 1991, 213–225.
  7. [7] V. Kadirkamanathan and M. Niranjan, A function estimationapproach to sequential learning with neural networks, NeuralComputation, 5(6), 1993, 954–975.
  8. [8] L. Yingwei, N. Sundararajan, and P. Saratchandran, A sequen-tial learning scheme for function approximation using minimalradial basis function neural networks, Neural Computation,9(2), 1997, 461–478.
  9. [9] G.B. Huang, P. Saratchandran, and N. Sundararajan, Anefficient sequential learning algorithm for growing and pruningRBF (GAP-RBF) networks, IEEE Transactions on Systems,Man, and Cybernetics, Part B: Cybernetics, 34(6), 2004,2284–2292.
  10. [10] G.B. Huang, P. Saratchandran, and N. Sundararajan, A gener-alized growing and pruning RBF (GGAP-RBF) neural networkfor function approximation, IEEE Transactions on NeuralNetworks, 16(1), 2005, 57–67.
  11. [11] N.Y. Liang, G.B. Huang, P. Saratchandran, and N. Sundarara-jan, A fast and accuracy online sequential learning algorithmfor feedforward networks, IEEE Transactions on Neural Net-works, 17(6), 2006, 1411–1423.
  12. [12] G. Li, M. Liu, and M. Dong, A new online learning algorithmfor structure-adjustable extreme learning machine, Computers& Mathematics with Applications, 60(3), 2010, 377–389.
  13. [13] Y. Xu and Y. Shu, Evolutionary extreme learning machine-based on particle swarm optimization, Advances in NeuralNetworks-ISNN 2006, Vol. 3971, (New York: Springer-Verlag,2006), 644–652. doi: 10.1007/11759966_95.
  14. [14] Y. Wang, F. Cao, and Y. Yuan, A study on effectivenessof extreme learning machine, Neurocomputing, 74(16), 2011,2483–2490.
  15. [15] G. Feng, G.B. Huang, Q. Lin, and R. Gay, Error minimizedextreme learning machine with growth of hidden nodes andincremental learning, Neural Networks, 20(8), 2009, 1352–1357.
  16. [16] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, et al., OP-ELM: Optimally pruned extreme learning machine, IEEETransactions on Neural Networks, 21(1), 2010, 158–162.
  17. [17] Y. Lan, Y.C. Soh, and G.B. Huang, Constructive hiddennodes selection of extreme learning machine for regression,Neurocomputing, 73(16–18), 2010, 3191–3199.
  18. [18] M. Han and X. Wang, A modified fast recursive hiddennodes selection algorithm for ELM, Proc. International Sym-posium on Neural Networks (IJCNN), IEEE, 2012, 1–7. doi:10.1109/IJCNN.2012.6252701.
  19. [19] S. Suresh, R. VenkateshBabu, and H. Kim, No-reference im-age quality assessment using modified extreme learning ma-chine classifier, Applied Soft Computing, Elsevier, 9(2), 2009,541–552.
  20. [20] P.L. Bartlett, The sample complexity of pattern classificationwith neural networks: The size of the weights is more importantthan the size of the network, IEEE Transactions on InformationTheory, 44(2), 1998, 525–536.
  21. [21] Q. Zhu, A. Qin, P. Suganthan, and G.B. Huang, Evolutionaryextreme learning machine, Pattern Recognition, 38(10), 2005,1759–1763.
  22. [22] N. Liu and H. Wang, Ensemble based extreme learning machine,IEEE Transactions on Signal Processing Letters, 17(8), 2010,754–757.
  23. [23] F. Han, H.F. Yao, and Q.H. Ling, An improved evolutionaryextreme learning machine based on particle swarm optimiza-tion, Neurocomputing, 116(0), 2013, 87–93.
  24. [24] W. Zong, G.B. Huang, and Y. Chen, Weighted extreme learningmachine for imbalance learning, Neurocomputing, 101(0), 2013,229–242.
  25. [25] A. Iosifidis, A. Tefas, and I. Pitas, Minimum class varianceextreme learning machine for human action recognition, IEEETransactions on Circuits and Systems for Video Technology,23(11), 2013, 1968–1979.
  26. [26] B.X. Xue, X. Ma, J. Gu, and Y.B. Li, An improved extremelearning machine based on variable-length particle swarm op-timization, Proc. 10th IEEE International Conf. on Roboticsand Biomimetics, (Shen Zhen, China: IEEE Computer Society,2013), 1030–1035.
  27. [27] G.B. Huang, Q.Y. Zhu, and C.K. Siew, Extreme learningmachine: Theory and applications, Neurocomputing, 70(1),2006, 489–501.
  28. [28] R.C. Eberhart and J. Kennedy, A new optimizer using particleswarm theory, Proc. 6th International Symposium on MicroMachine and Human Science, Nagoya, Japan, 1995, 39–43.
  29. [29] J. Kennedy and R. Eberhart, Particle swarm optimization,Proc. IEEE International Conf. on Neural Networks, SpringerUS, Vol. 4, 1995, 1942–1948. doi: 10.1007/978-0-387-30164-8_630.
  30. [30] M.I. Solihin, R. Akmeliawati, and I.B. Tijani, Robust statefeedback control design via PSO-based constrained optimiza-tion, Control and Intelligent Systems, 39(3), 2011, 168.
  31. [31] Z. AI-Hamouz, S.F. Faisal, and S. AI Sharif, Application ofparticle swarm optimization algorithm for optimal reactivepower planning, Control and Intelligent Systems, 35(1), 2007,66–72.

Important Links:

Go Back