Rui Yang, Jerry Fuh, Jie Sun, Arthur Tay, and Kok K. Tan


  1. [1] K.K. Tan and S.N. Huang, Geometrical error compensationof machines with significant random errors, ISA Transactions,44(1), 2005, 43–53.
  2. [2] C.S. Teo, K.K. Tan, and S.Y. Lim, Dynamic geometric compen-sation for gantry stage using iterative learning control, IEEETransactions on Instrumentation and Measurement, 57(2),2008, 413–419.
  3. [3] K.K. Tan, S.N. Huang, and T.H. Lee, Geometrical errorcompensation and control of an XY table using neural networks,Control Engineering Practice, 14(1), 2006, 59–69.
  4. [4] T.H. Lee, K.K. Tan, and S.N. Huang, Adaptive frictioncompensation with a dynamical friction model, IEEE/ASMETransactions on Mechatronics, 16(1), 2011, 133–140.
  5. [5] J. Mayr, J. Jedrzejewski, E. Uhlmann, M.A. Donmez, W.Knapp, F. Hartig, K. Wendt, T. Moriwaki, P. Shore, R.Schmitt, C. Brecher, T. Wrz, and K. Wegener, Thermal issuesin machine tools, CIRP Annals – Manufacturing Technology,61(2), 2012, 771–791.
  6. [6] R. Ramesh, M.A. Mannan, and A.N. Poo, Error compensationin machine tools a review: Part II: thermal errors, InternationalJournal of Machine Tools and Manufacture, 40(9), 2000,1257–1284.
  7. [7] Y. Wang, G. Zhang, S.M. Kee, and J.W. Sutherland, Com-pensation for the thermal error of a multi-axis machining cen-ter, Journal of Materials Processing Technology, 75(1), 1998,45–53.
  8. [8] S. Li, Y. Zhang, and G. Zhang, A study of pre-compensationfor thermal errors of NC machine tools, International Journalof Machine Tool & Manufacture, 37(12), 1997, 1715–1719.
  9. [9] S. Yang, J. Yan, and J. Ni, Accuracy enhancement of a hor-izontal machining center by real-time compensation, Journalof Manufacturing Systems, 15(2), 1996, 113–124.
  10. [10] J. Yang, J. Yuan, and J. Ni, Thermal error mode analysis androbust modeling for error compensation on a CNC turning cen-ter, International Journal of Machine Tools and Manufacture,39(9), 1999, 1367–1381.
  11. [11] J. Mou, M.A. Donmez, and C. Cetinkunt, An adaptive errorcorrection method using feature-based analysis techniques formachine performance improvement. Part 1: Theory derivation,ASME Transactions on Journal of Engineering for Industry,117, 1995, 584–590.
  12. [12] D.A. Krulewich, Temperature integration model and measure-ment point selection for thermally induced machine tool errors,Mechatronics, 8, 1998, 395–412.
  13. [13] A. Balsamo, D. Marques, and S. Sartori, A method for thermaldeformation corrections of CMMs, Annals of the CIRP, 39(1),1990, 557–560.
  14. [14] S. Eastwood and P. Webb, Compensation of thermal defor-mation of a hybrid parallel kinematic machine, Robotics andComputer-Integrated Manufacturing, 25(1), 2009, 81–90.
  15. [15] J.S. Chen, Fast calibration and modeling of thermally inducedmachine tool errors in real machining, International Journalof Machine Tools and Manufacture, 37(2), 1997, 159–169.
  16. [16] M. Yang and J. Lee, Measurement and prediction of ther-mal errors of a CNC machining centre using two sphericalballs, ASME Transactions on Journal of Materials ProcessingTechnology, 75, 1998, 180–189.
  17. [17] J. Mou, A method of using neural networks and inversekinematics for machine tools error estimation and correction,Journal of Manufacturing Science and Engineering, 119(2),1997, 247–254.
  18. [18] G.M. Mendez and L.A. Leduc, Hybrid learning algorithm forinterval type-2 fuzzy logic systems, Control and IntelligentSystems, 34(3), 2006, 206–215.
  19. [19] X. Li, G. Ouyang, X.P. Guan, and R. Du, Ram positioncontrol in plastic injection molding machines with higher-orderiterative learning, Control and Intelligent Systems, 34(1), 2006,64–72.
  20. [20] Y. Zhang, S.N. Huang, and K.K. Tan, Vision-assisted thermalmonitoring system for CNC machine surveillance, Proc. IEEEIntern. Conf. on Automation and Logistics, 2008, 382–387.
  21. [21] Y.M. Ertekin and A.C. Okafor, Vertical machining centeraccuracy characterization using laser interferometer, Journalof Materials Processing Technology, 105(3), 2000, 394–406.
  22. [22] S. Sartori and G.X. Zhang, Geometric error measurementand compensation of machine, Annals of CIRP, 44(2), 1995,617–634.
  23. [23] J. Lopez and M. Artes, A new methodology for vibrationerror compensation of optical encoders, Sensors, 12(4), 2012,4918–4933.
  24. [24] R. Hocken, J.A. Simpson, B. Borchardt, J. Lazar, C. Reeve,and P. Stein, Three dimensional metrology, Annals of theCIRP, 26(2), 1977, 403–408.
  25. [25] K.K. Tan, T.H. Lee, and S.N. Huang, Precision motion controldesign and implementation, Advances in industrial controlseries, 2nd ed. (London: Springer-Verlag, 2008).
  26. [26] G. Chen, J. Yuan, and J. Ni, A displacement measurementapproach for machine geometric error assessment, InternationalJournal of Machine Tools & Manufacture, 41, 2001, 149–161.
  27. [27] K. Umetsu, R. Furutani, S. Osawa, T. Takatsuji, and T.Kurosawa, Geometric calibration of a coordinate measuringmachine using a laser tracking system, Measurement Scienceand Technology, 16(12), 2005, 2466–2472.
  28. [28] P.M. Ferreira, C.R. Liu, and E. Merchant, A contribution tothe analysis and compensation of the geometric error of amachining center, Annals of the CIRP, 35, 1986, 259–262.
  29. [29] K.K. Tan, S.N. Huang, and H.L. Seet, Geometrical errorcompensation of precision motion systems using radial basisfunction, IEEE Transactions on Instrumentation and Mea-surement, 49(5), 2000, 984–991.
  30. [30] S. Olyaeea, S. Hamedib, and Z. Dashtbana, Efficient per-formance of neural networks for nonlinearity error modelingof three-longitudinal-mode interferometer in nano-metrologysystem, Precision Engineering, 36(3), 2012, 379–387.
  31. [31] M. Arif, T. Ishihara, and H. Inooka, Intelligent learningcontrollers for nonlinear systems using radial basis neuralnetworks, Control and Intelligent Systems, 32(2), 2004, 61–68.
  32. [32] H.Y. Lau, X. Li, and R. Du, A new method for monitoringand tuning plastic injection molding machines, Control andIntelligent Systems, 36(2), 2008, 129–136.
  33. [33] R.J. Howlett and L.C. Jain (eds.), Radial basis function net-works 2: New advances in design, Vol. 67 (Springer, 2001).
  34. [34] I. Aizenberg, Complex-valued neural networks with multi-valuedneurons (Springer, 2011).
  35. [35] C.M. Bishop, Neural networks for pattern recognition (OxfordUniversity Press, 1995).
  36. [36] P. Yang, T. Takamura, S. Takahashi, K. Takamasu, O. Sato,S. Osawa, and T. Takatsuji, Development of high-precisionmicro-coordinate measuring machine: Multi-probe measure-ment system for measuring yaw and straightness motion er-ror of XY linear stage, Precision Engineering, 35(3), 2011,424–430.
  37. [37] P. Majda, Modeling of geometric errors of linear guidewayand their influence on joint kinematic error in machine tools,Precision Engineering, 36(3), 2012, 369–378.

Important Links:

Go Back