Create New Account
Login
Search or Buy Articles
Browse Journals
Search Proceedings
Subscriptions
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
Browse Journals
Browse Proceedings
A NEW DESIGN METHOD OF OPTIMAL PID CONTROLLER WITH DYNAMIC PERFORMANCES CONSTRAINED
Xian H. Li, Hai B. Yu, and Ming Z. Yuan
References
[1] J.G. Ziegler and N.B. Nichols, Optimum settings for automaticcontrollers, Transactions of the ASME, 64, 1942, 759–768.
[2] J.G. Ziegler and N.B. Nichols, Process lags in automatic controlcircuits, Transactions of the ASME, 65, 1943, 433–444.
[3] G.H. Cohen and G.A. Coon, Theoretical consideration ofrelated control, Transactions of the ASME, 75, 1953, 827–834.
[4] C.R. Madhuranthakam, A. Elkamel, and H. Budman, Optimaltuning of PID controllers for FOPTD, SOPTD and SOPTDwith lead processes, Chemical Engineering and Processing, 47,2008, 251–264.
[5] D.H. Kim and J.H. Cho, Intelligent tuning of PID controllerwith disturbance function using immune algorithm, 2004 IEEEAnnual Meeting Fuzzy Information Processing, 1 (27–30), 2004,286–291.
[6] Z.L. Gaing, A particle swarm optimization approach for opti-mum design of PID controller in AVR System, IEEE Trans-actions on Energy Conversion, 19 (2), 2004, 384–391.
[7] S. Pothiya and I. Ngamroo, Optimal fuzzy logic-based PIDcontroller for load–frequency control including superconduct-ing magnetic energy storage units, Energy Conversion andManagement, 49, 2008, 2833–2838.
[8] M. Zhuang and D.P. Atherton, Automatic tuning of opti-mum PID controllers, IEE Proceedings D Control Theory andApplications, 140 (3), 1993, 216–224.
[9] S. Daley and G.P. Liu, Optimal PID tuning using direct searchalgorithms, Computing Control Engineering Journal, 10 (2),1999, 51–56.
[10] H. Panagopoulos, K.J. Astrom, and T. Hagglund, Designof PID controllers based on constrained optimization, IEEProceedings, Control Theory and Applications, 149 (1), 2002,32–40.
[11] C. Hwang and C.Y. Hsiao, Solution of a non-convex optimiza-tion arising in PI/PID control design, Automatica, 38, (2002),1895–1904.
[12] C.H. Hsieh and J.H. Chou, Design of optimal PID controllers forPWM feedback systems with bilinear plants, IEEE Transactionon Control Systems Technology, 15 (6), 2007, 1075–1079.
[13] J.B. He, Q.G. Wang, and T.H. Lee, PI/PID controller tuningvia LQR approach, Proc. 37th IEEE Conference on Decisionand Control, Tampa, F., 1998, 1177–1182.260
[14] G.R. Yu and R.C. Hwang, Optimal PID speed control of brush-less DC motors using LQR approach, 2004 IEEE InternationalConference on Systems, Man and Cybernetics, The Hague,Netherlands 473–478.
[15] P.B. Dickinson and A.T. Shenton, A parameter space approachto constrained variance PID controller design, Automatica, 45,2009, 830–835.
[16] J.C. Basilio and S.R. Matos, Design of PI and PID controllerswith transient performance specification, IEEE Transactionson Education, 45 (4), 2002.
[17] M. Saeki, Fixed structure PID controller design for standardH∞ control problem, Automatica, 42, 2006, 93–100.
[18] O. Lequin, M. Gevers, M. Mossberg, E. Bosmans, and L. Triest,Iterative feedback tuning of PID parameters: Comparison withclassical tuning rules, Control Engineering Practice, 11, 2003,1023–1033.
[19] M. Xu, S.Y. Li, C.K. Qi, and W.J. Cai, Auto-tuning ofPID controller parameters with supervised receding horizonoptimization, ISA Transactions, 44, 2005, 491–500.
[20] G.L. Luo and G.N. Saridis, LQ design of PID controllers forrobot arms, IEEE Journal of Robotics and Automation, 1 (3),1985, 152–159.
[21] X.H. Li, H.B. Yu, and M. Z. Yuan, Design of an optimalPID controller based on Lyapunov approach, Proceedings of2009 International Conference on Information Engineeringand Computer Science (ICIECS-2009), Wuhan, 19–20, 2009.
[22] X.H. Li, H.B. Yu, M.Z. Yuan, and J. Wang, Design of robustoptimal proportional–integral–derivative controller based onnew interval polynomial stability criterion and Lyapunov the-orem in the multiple parameters’ perturbations circumstance,IET Control Theory and Applications, 4 (11), 2010, 2427–2440.
[23] D.E. Rivera, M. Morari, and S. Skogestad, Internal modelcontrol 4 PID controller design, Industrial and EngineeringChemistry, Process Design and Development, 25, 1986, 252–265.
[24] S. Skogestad, Simple analytic rules for model reduction andPID controller tuning, Journal of Process Control, 13 (4), 2003,291–309.
[25] M. Veronesi and A. Visioli, Performance assessment and re-tuning of PID controllers for integral processes, Journal ofProcess Control, 20, 2010, 261–269.
[26] A. Visioli, A new design for a PID plus feedforward controller,Journal of Process Control, 14, 2004, 457–463.
[27] K.K. Tan, T.H. Lee, and X. Jiang, On-line relay identification,assessment and tuning of PID controller, Journal of ProcessControl, 11, 2001, 483–496.
[28] Q.G. Wanga, Z.P. Zhang, K.J. Astrom, and L.S. Chek, Guar-anteed dominant pole placement with PID controllers, Journalof Process Control, 19, 2009, 349–352.
[29] K.J. ˚Astr¨om and T. H¨agglund, Automatic tuning of simpleregulators with specifications on phase and amplitude margins,Automatica, 20 (5), 1984, 645–651.
[30] K.J. ˚Astr¨om and T. H¨agglund, PID controllers: Theory, designand tuning, 2nd ed. (Research Triangle Park, NC: InstrumentSociety of America, 1995).
[31] K.J. Astrom and T. Hagglund, The future of PID control,Control Engineering Practice, 9, 2001, 1163–1175.
[32] V. Bob´al, J. B¨ohm, J. Fessl, and J. Mach´acek, Digital self-tuning controllers: Algorithms, implementation and applica-tions (Advanced Textbooks in Control and Signal Processing),1st ed. (Berlin Heidelberg: Springer, 2005), 53–136. ISBN-10:1852339802
[33] A. Leva, PID autotuning algorithm based on relay feedback,IEE Proc. D, Control Theory and Applications, 140 (5), 1993,328–338.
[34] A.Visioli, Optimal tuning of PID controllers for integral andunstable processes, IEE Proceedings on Control Theory Appli-cation, 148 (2), 2001, 180–184.
[35] X.H. Li, H.B. Yu, M.Z. Yuan, C.Z. Zang, and Z. Wang, OptimalMIMO PID controllers for the MIMO processes, Proc. ASME2011 Dynamic Systems and Control Conference, Arlington,VA, 2011, 1–8.
[36] J. Lan, J. Cho, D. Erdogmus, J.C. Principe, M.A. Motter,and J. Xu, Local linear PID controllers for nonlinear control,Control and Intelligent Systems, 1, 2005, 26–34.
[37] T.R. Rangaswamy, J. Shanmugam, and K.P. Mohammed,Adaptive fuzzy tuned PID controller for combustion of utilityboiler, Control and Intelligent Systems, 1, 2005, 63–71.
[38] M. Tokuda, T. Yamamoto, and Y. Monden, A neural-net basedPID controllers for nonlinear multivariable systems, Controland Intelligent Systems, 1, 2005, 36–46.
[39] J.J. D’Azzo and C.H. Houpis, ‘Linear control system analysisand design’, 2nd ed. (New York, USA: McGraw-Hill, Inc.,1981), 483–522.
[40] M.D. Tong, Linear system theory and design, 2nd ed. (Heifei,China: University of Science and Technology of China press,2004), (in Chinese), 208–245.
[41] G. Obinata and B.D. Anderson, Model reduction for controlsystem design, (Berlin Heidelberg: Springer, 2001), 22–42.
[42] B.C. Moore, Principal component analysis in linear systems:Controllability, observability, and model reduction, IEEETransactions on Automatic Control, 26 (1), 17–32.
[43] D.G. Meyer and S. Srinivasan, Balancing and model reductionfor second-order form linear systems, IEEE Transactions onAutomatic Control, 41 (11), 1632–1644.
[44] M.J. Bosley and F.P. Less, Methods for the reduction of highorder state variable models to simple transfer function models,Automatica, 8 (6), 1972, 765–775.
[45] C.M. Liaw, C.T. Pan, and Y.C. Chen, Reduction of transferfunctions using dispersion analysis and the continued fractionmethod, International Journal of Systems Science, 17 (5),1986, 807–817.
[46] W. Qi and W. Shifu, Principle of automatic control, 2nd ed.(Tsinghua University Press 2006) (in Chinese), 152–402.
[47] D.E. Seborg, T.F. Edgar, and D.A. Mellichamp, Process dy-namic and control, in J.C. Wang and Y.H. Jin (Trans.),2nd ed. (Publishing House of Electronic Industry, 2006), (inChinese), 96–360.
[48] S.S. Hu, Automatic control theory, 4th edition, Sciences press,Beijing, 2001, (in Chinese), 77–269.
[49] T.F. Coleman and Y. Li, On the convergence of reﬂectiveNewton methods for large-scale nonlinear minimization subjectto bounds, Mathematical Programming, 67(2), 1994, 189–224.
[50] T.F. Coleman and Y. Li, A reﬂective Newton method forminimizing a quadratic function subject to bounds on someof the variables, SIAM Journal on Optimization, 6(4), 1996,1040–1058.
[51] D.F. Shanno, Conditioning of quasi-Newton methods for func-tion minimization, Mathematics of Computing, 24, 1970, 647–656.
[52] R.K. Brayton, S.W. Director, G.D. Hachtel, and L. Vidigal,A new algorithm for statistical circuit design based on quasi-Newton methods and function splitting, IEEE Transactionson Circuits and Systems, 26(9), September 1979, 784–794.
[53] R. Fletcher and M.J.D. Powell, A rapidly convergent descentmethod for minimization, Computer Journal, 6, 1963, 163–168.
[54] M.A. Branch, T.F. Coleman, and Y. Li, A subspace, inte-rior, and conjugate gradient method for large-scale boundcon-strained minimization problems, SIAM Journal on ScientificComputing, 21(1), 1999, 1–23.
[55] T.F. Coleman and A. Verma, A preconditioned conjugategradient approach to linear equality constrained minimization,Computational Optimization and applications, 20(1), 61–72.
[56] T. Steihaug, The conjugate gradient method and trust re-gions in large scale optimization, SIAM Journal on NumericalAnalysis, 20, 1983, 626–637.
[57] R.J. Vanderbei and D.F.Shanno, An interior point algorithmfor non-convex nonlinear programming, Computational Opti-mization and Applications, 13, 1999, 231–252.
[58] D.F. Shanno and R.J. Vanderbei, Interior point methods fornon-convex nonlinear programming: Orderings and higher-order methods, Mathematical Programming, 87, 2000, 303–316.
[59] Y. Zhang, Solving large-scale linear programs by interiorpointmethods under the MATLAB environment, Technical ReportTR 96-01, Department of Mathematics and Statistics, Univer-sity of Maryland, Baltimore County, Baltimore, MD, 1995.261,
Important Links:
Abstract
DOI:
10.2316/Journal.201.2012.4.201-2392
From Journal
(201) Mechatronic Systems and Control (formerly Control and Intelligent Systems) - 2012
Go Back