Jason P. Frye and Brian C. Fabien


  1. [1] J. Yen and L.R. Petzold, An efficient Newton-type iterationfor the numerical solution of highly oscillatory constrainedmultibody dynamic systems, SIAM Journal on Scientific Com-puting, 19 (5), 1998, 1513–1534.
  2. [2] J.P. Frye and B.C. Fabien, Modeling and simulation of non-holonomic Lagrangian dynamic systems, Proc. 21st IASTEDIntl. Conf. on Modelling and Simulation, Banff, 2010, 228–234.
  3. [3] B.C. Fabien, Analytical system dynamics: Modeling and sim-ulation (New York, NY: Springer, 2009).
  4. [4] L. Meirovitch, Methods of analytical dynamics (New York,NY: McGraw-Hill, 1970).
  5. [5] E. Hairer and G. Wanner, Solving ordinary differential equa-tions II: Stiff and differential-algebraic problems (Berlin:Springer-Verlag, 1996).
  6. [6] C.W. Gear, Differential-algebraic equation index transforma-tions, SIAM Journal Scientific and Statistical Computing,9 (1), 1988, 39–47.
  7. [7] C.W. Gear, Differential algebraic equations, indices, and inte-gral algebraic equations, SIAM Journal on Numerical Analysis,27 (6), 1990, 1527–1534.
  8. [8] K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical so-lutions of initial-value problems in differential-algebraic equa-tions (Philadelphia: SIAM, 1996).
  9. [9] C.W. Gear, G.K. Gupta, and B.J. Leimkuhler, Automaticintegration of the Euler-Lagrange equations with constraints,Journal of Computational and Applied Mathematics, 12, 1985,77–90.
  10. [10] K. Arczewski and W. Blajer, A unified approach to themodelling of holonomic and nonholonomic mechanical systems,Mathematical and Computer Modelling of Dynamical Systems,2 (3), 1996, 157–174.
  11. [11] X. Zhang, J.K. Mills, and W.L. Cleghorn, Coupling charac-teristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible link, Multibody SystemDynamics, 21 (2), 2009, 167–192.
  12. [12] J. Garc´ia de Jal´on and E. Bayo, Kinematic and dynamicsimulation of multibody systems: The real-time challenge (NewYork, NY: Springer-Verlag, 1993).
  13. [13] W.C. Rheinboldt, Differential algebraic systems as differentialequations on manifolds, Mathematics of Computation, 43 (168),1984, 473–482.
  14. [14] J. Yen, Constrained equations of motion in multibody dynamicsas ODEs on manifolds, SIAM Journal on Numerical Analysis,30 (2), 1993, 553–568.
  15. [15] F. Potra and J. Yen, Implicit numerical integration for Euler–Lagrange equations via tangent space parameterization, Me-chanics of Structures and Machines, 19 (1), 1991, 1–18.
  16. [16] F. Potra and W.C. Rheinboldt, On the numerical solution ofthe Euler–Lagrange equations, Mechanics of Structures andMachines, 19, 1991, 76–98.
  17. [17] R.A. Layton, Principles of analytical system dynamics (NewYork, NY: Springer-Verlag, 1998).

Important Links:

Go Back