Jian-Xin Xu and Yuanguang Sun


  1. [1] A. Campbell, J. Reinken, B. Allan, and G. Martinez, Falls inold age: A study of frequency and related clinical factors, Age& Ageing, 10(4), 1981, 264–270.
  2. [2] D. Prudham and J. Evans, Factors associated with falls inthe elderly: A community study, Age & Ageing, 10(3), 1981,141–146.
  3. [3] Vital Statistics Fourth Quarter and Yearly Summary (Ire-land: Central Statistics Office, 2005). [Online].
  4. [4] American Academy of Orthopaedic Surgeons, Don’t let a FALLbe your last TRIP, 1998.
  5. [5] A.K. Bourke, J.V. O’Brien, and G.M. Lyons, Evaluation of athreshold based tri-axial accelerometer fall detection algorithm,Gait Posture, 26(2), 2007, 194–199.
  6. [6] D.M. Karantonis, M.R. Narayanan, M. Mathie, N.H. Lovell,and B.G. Celler, Implementation of a real-time human move-ment classifier using a tri-axial accelerometer for ambulatorymonitoring, IEEE Transactions on Information Technology inBiomedicine, 10(1), 2006, 156–167.
  7. [7] M.J. Mathie, A.C.F. Coster, N.H. Lovell, and B.G. Celler, Apilot study of long term monitoring of human movement inthe home using accelerometer, Journal of Telemedicine andTelecar, 10(3), 2004, 144–151.
  8. [8] D.U. Jeong, S.J. Kim, and W.Y. Chung, Classification ofposture and movement using a 3-axis accelerometer, Proc. In-ternational Conf. Convergence Information Technology, 2007,837–844.
  9. [9] C. Rita, P. Andrea, and V. Roberto, A multi-camera visionsystem for fall detection and alarm generation, Expert Systems,24(5), 2007, 334–345.
  10. [10] S.-G. Miaou, P.-H. Sung, and C.-Y. Huang: A customizedhuman fall detection system using omni-camera images andpersonal information, Proc. First Transdisciplinary Conf. Dis-tributed Diagnosis and Home Healthcare, D2H2 2006, 2006,39–42.
  11. [11] D. Litvak, I. Gannot, and Y. Zigel: Fall detection of elderlythrough floor vibrations and sound, Proc. IEEE Engineeringin Medicine and Biology Society, 2008, 4632–4635.
  12. [12] H. Foroughi, A. Naseri, A. Saberi, and H.S. Yazdi: Aneigenspace-based approach for elderly fall detection using in-tegrated time motion image and neural network, Proc. 9thInternational Conf. Signal Processing, 2008, 1499–1503.
  13. [13] X. Zhou, L.F. Draganich, and F. Amirouche, A dynamic modelfor simulating a trip and fall during gait, Medical Engineeringand Physics, 24(2), 2002, 121–127.
  14. [14] Z. Wang, P. Goldsmith, and J. Gu, Adaptive trajectory trackingcontrol for Euler–Lagrange systems with application to robotmanipulators, Control and Intelligent Systems, 37(1), 2009,2086.
  15. [15] P. Jiang and Y.Q. Chen, A repetitive segmented training neuralnetwork controller with applications to robot visual servoing,Control and Intelligent Systems, 33(3), 2005, 1344.
  16. [16] X. Mu and Q. Wu, Synthesis of a complete sagittal gait cyclefor a five link biped, Robotica, 21(5), 2003, 581–587.
  17. [17] G. Capi and K. Mitobe, Humanoid robot motion planning – Amultiple constraints approach, Control and Intelligent Systems,38(4), 2010, 2186.
  18. [18] H. Hemami and B.F. Wyman, Modelling and control of con-strained dynamic systems with application to biped locomotionin the frontal plane, IEEE Transactions on Automatic Control,24(4), 1979, 526–535.
  19. [19] J.J. Craig, Introduction to robotics, mechanics, and control(MA: Addison Wesley 1989).
  20. [20] H.K. Lum, M. Zribi, and Y.C. Soh, Planning and control ofa biped robot, International Journal of Engineering Science,37(10), 1999, 1319–1349.
  21. [21] Y.F. Zheng and H. Hamami, Impact effect of biped contactwith the environment, IEEE Transactions on Systems Man,Cybernetics, SMC-3(3), 1984, 437–443.
  22. [22] A.J. Blake, K. Morgan, and M.J. Bendall, Falls by elderlypeople at home: Prevalence and associated factors, Age &Ageing, 17(6), 1988, 365–372.
  23. [23] F. Brad and E.S. Khaled, Physics-based robotic simulationusing joint constraints, Proc. 13th Annual Conf. Industry andManagement Systems, Cocoa Beach, Fl, 2007.

Important Links:

Go Back