Jorge Estrela da Silva and João Borges de Sousa


  1. [1] C. Samson, Path following and time-varying feedback stabi-lization of a wheeled mobile robot, Int. Conf. ICARCV’92,Singapore, 1992, RO–13.1.
  2. [2] O. Sordalen and C. Canudas de Wit, Exponential controllaw for a mobile robot: extension to path following, 3, 1992,2158–2163.
  3. [3] P. Encarna¸c˜ao, A. Pascoal, and M. Arcak, Path following formarine vehicles in the presence of unknown currents, Proc.SYROCO’2000 – 6th Int. IFAC Symposium on Robot Control,II, Vienna, Austria, 2000, 469–474.252
  4. [4] D. Nelson, D. Barber, T. McLain, and R. Beard, Vector fieldpath following for miniature air vehicles, IEEE Transactionson Robotics, 23 (3), 2007, 519–529.
  5. [5] G. Indiveri, M. Aicardi, and G. Casalino, Nonlinear time-invariant feedback control of an underactuated marine vehi-cle along a straight course, Proc. 5th IFAC Conference onManoeuvring and Control of Marine Crafts, MCMC 2000,Aalborg, Denmark, August 2000, 221–226.
  6. [6] L. Lapierre and B. Jouvencel, Robust nonlinear path-followingcontrol of an auv, IEEE Journal of Oceanic Engineering,33 (2), 2008, 89–102.
  7. [7] M. Aicardi, G. Casalino, G. Indiveri, A. Aguiar, P. En-carna¸c˜ao, and A. Pascoal, A planar path following controllerfor underactuated marine vehicles, Proc. 9th MediterraneanConference on Control and Automation, Dubrovnik, Croatia,2001.
  8. [8] J. Slotine and W. Li, Applied nonlinear control (Prentice-Hall:Englewood Cliffs, New Jersey, 1991).
  9. [9] U. Nunes and L. Bento, Data fusion and path-followingcontrollers comparison for autonomous vehicles, NonlinearDynamics, 49, 2007, 445–462.
  10. [10] N. H. H. M. Hanif and T. Z. Yaw, Modeling of high speedvehicle for path following and obstacles avoidance, The 18thIASTED Int. Conf. Modelling and Simulation, Anaheim, CA,USA, ACTA Press, 2007, 434–439.
  11. [11] V. Cadanat, P. Soueres, and T. Hamel, A reactive path-following controller to guarantee obstacle avoidance duringthe transient phase, International Journal of Robotics andAutomation, 21, 2006, 256–265.
  12. [12] R. Bellman, Dynamic programming (Princeton UniversityPress: Princeton, 1957).
  13. [13] M. Bardi and I. Capuzzo-Dolcetta, Optimal control andviscosity solutions of Hamilton-Jacobi-Bellman equations(Birkhauser: Boston, 1997).
  14. [14] R. Isaacs, Differential games; a mathematical theory withapplications to warfare and pursuit, control and optimization(John Wiley & Sons: New York, 1965).
  15. [15] N. Krasovskii and A. Subbotin, Game-theoretical controlproblems (Springer-Verlag: New York, 1988).
  16. [16] W.H. Fleming and H.M. Soner, Controlled Markov processesand viscosity solutions (Springer: New York, 2006).
  17. [17] F. Clarke, Y. Ledyaev, R. Stern, and P. Wolenski, Nons-mooth analysis and control theory, ser. Graduate Texts inMathematics vol. 178 (Springer-Verlag: New York, 1998).
  18. [18] F. Blanchini and S. Miani, Set-theoretic methods in control(Birkhauser: Boston, 2008).
  19. [19] E. Cristiani and M. Falcone, Fully-discrete schemes for thevalue function of pursuit-evasion games with state constraints,Annals of International Society of Dynamic Games, Birkauser,Boston, 10, 2009, 178–205.
  20. [20] B. Gough, GNU scientific library reference manual, 2nd edition(Network Theory Ltd., 2003).
  21. [21] J.E. da Silva, B. Terra, R. Martins, and J.B. de Sousa,Modeling and simulation of the lauv autonomous underwatervehicle, 13th IEEE IFAC Int. Conf. Methods and Models inAutomation and Robotics, Szczecin, Poland, August 2007.

Important Links:

Go Back