Mahmud I. Solihin, Rini Akmeliawati, Ismaila B. Tijani, and Ari Legowo


  1. [1] D.-W. Gu, P.H. Petkov, and M.M. Konstantinov, Robustcontrol design with MATLAB (London: Springer-Verlag, 2005).
  2. [2] D. McFarlane and K. Glover, Robust controller design usingnormalized coprime factor plant descriptions, Springer VerlagLecture notes in control and information science series.
  3. [3] C. Olalla, R. Leyva, A. El Aroudi, and I. Queinnec, RobustLQR control for PWM converters: An LMI approach, IEEETransactions on Industrial Electronics, 56 (7).
  4. [4] T.H. Kim, I. Maruta, and T. Sugie, Robust PID controllertuning based on the constrained particle swarm optimization,Automatica, 44, 2008, 1104–1110.
  5. [5] K. Zielinski, M. Joost, R. Laur, and B. Orlik, Comparisonof differential evolution and particle swarm optimization forthe optimization of a PI cascade control, Proc. IEEE WorldCongress on Computational Intelligence, 3114–3121.
  6. [6] D.H. Kim and J.I. Park, Intelligent PID controller tuning ofAVR system using GA and PSO, in lecture notes in computerscience, 3645 (Berlin-Heidelberg: Springer, 2005).
  7. [7] C.N. Ko and C.J. Wu, A PSO-tuning method for design offuzzy PID controllers, Journal of Vibration and Control, 14 (3),2008, 375–395.
  8. [8] B.T. Thanh and M. Parnichun, Balancing control of bicyroboby particle swarm optimization-based structure-specified mixedH2/H∞ control, International Journal of Advanced RoboticSystems, 5 (4), 2008, 395–402.
  9. [9] D. Nuemann and H.X. Araujo, Hybrid differential evolutionmethod for the mixed H2/H∞ robust control problem underpole assignment, Proc. 44th IEEE Conf. on Decision andControl, and the European Control Conf., Seville, 1319–1324.
  10. [10] K. Ogata, Modern control engineering (Prentice-Hall: NewJersey, 2002).
  11. [11] D. Hinrichsen and A.J. Pritchard, Stability radii of linearsystems, Systems & Control Letters, 7, 1986, 1–10.
  12. [12] R. Akmeliawati and C.P. Tan, Feedback controller and ob-server design to maximize stability radius, Proc. Int. Conf. onIndustrial Technology, Hong Kong, 2005, 660–664.
  13. [13] J. Zhao, T. Li, and J. Qian, Application of particle swarmoptimization algorithm on robust PID controller tuning, Ad-vances in natural computation (Berlin/Heidelberg: Springer,2005), 948–957.
  14. [14] K.E. Parsopoulos and M.N. Vrahatis, Recent approaches toglobal optimization problems through particle swarm optimiza-tion, Natural Computing, 1 (2–3), 2002, 235–306.
  15. [15] Y.H. Shi and R.C. Eberhart, A modified particle swarm opti-mizer, Proc. IEEE International Conference on EvolutionaryComputation, Piscataway, NJ, 1998, 69–73.
  16. [16] M. Clerc and J. Kennedy, The particle swarm – explosion,stability, and convergence in a multi-dimensional complexspace, IEEE Transaction on Evolutionary Computation, 6,2002, 58–73.
  17. [17] A. Ratnaweera, S.K. Hakmugage, and H.C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying accelerations coefficients, IEEE Transactions on Evo-lutionary Computation, 8 (3), 2004, 240–255.
  18. [18] J.J. Liang, A.K. Qin, P.N. Suganthan, and S. Baskar, Com-prehensive learning particle swarm optimizer for global opti-mization of multimodal functions, IEEE Trans. EvolutionaryComputation, 10, 2006, 281–295.
  19. [19] T.Y. Chen and T.M. Chi, On the improvements of the par-ticle swarm optimization algorithm, Advances in EngineeringSoftware, 41, 2010, 229–239.
  20. [20] E.M. Mezura-Montes and J.I. Flores-Mendoza, Improved parti-cle swarm optimization in constrained numerical search spaces,Nature-Inspired Algorithms for Optimisation, SCI 193, 2009,299–332.177
  21. [21] J. Kennedy and R.C. Eberhart, Particle swarm optimization,Proc. IEEE Int. Conf. on Neural Networks, 4, Perth, 1995,1942–1948.
  22. [22] Y.H. Shi and R.C. Eberhart, A modified particle swarmoptimizer, Proc. IEEE International Conf. on EvolutionaryComputation, 1998, 69–73.
  23. [23] R. Poli, J. Kennedy, and T. Blackwell, Particle swarm opti-mization: An overview, Swarm Intelligent, 1, 2007, 33–57.
  24. [24] R.C. Eberhart and Y.H. Shi, Comparing inertia weights andconstriction factors in particle swarm optimization, Proc. 2000Congress on Evolutionary Computation, 1, 2000, 84–88.
  25. [25] C.A. Coello Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: Asurvey of the state of the art, Computer Methods in AppliedMechanics and Engineering, 191(11–12), 2002, 1245–1287.
  26. [26] M.I. Solihin, Wahyudi, A. Legowo, and R. Akmeliawati, Self-erecting inverted pendulum employing PSO for stabilizingand tracking controller, Proc. 5th Int. Colloquium on SignalProcessing & Its Applications, Kuala Lumpur, 2009, 63–68.
  27. [27] H. Lu and W. Chen, Dynamic-objective particle swarm op-timization for constrained optimization problems, Journal ofGlobal Optimization, 12, 2006, 409–419.
  28. [28] K. Zielinski and R. Laur, Stopping criteria for a constrainedsingle-objective particle swarm optimization algorithm, Infor-matica 31, 2007, 51–59.
  29. [29] M.I. Solihin, Wahyudi, and A. Legowo, Fuzzy-tuned PID anti-swing control of automatic gantry crane, Journal of Vibrationand Control, 16 (1), 2010, 127–145.

Important Links:

Go Back