Nitendra Nath, David Braganza, Darren M. Dawson, and Timothy Burg


  1. [1] N. Nath, D. Braganza, & D.M. Dawson, Position based struc-ture from motion using a moving calibrated camera, Proc.American Control Conf., Seattle, WA, 2008, 1764–1769.
  2. [2] S.J. Julier & J.K. Uhlmann, A counter example to the theoryof simultaneous localization and map building, Proc. IEEE Int.Conf. Robotics and Automation, Seoul Korea, 2001, 4238–4243.
  3. [3] X. Chen & H. Kano, A new state observer for perspectivesystems, IEEE Transactions on Automatic Control, 47(4),2002, 658–663.
  4. [4] K. Reif, F. Sonnemann, & R. Unbehauen, An EKF-basednonlinear observer with a prescribed degree of stability, Auto-matica, 34(9), 1998, 1119–1123.
  5. [5] M. Jankovic & B.K. Ghosh, Visually guided ranging fromobservations of points, lines and curves via an identifier basednonlinear observer, Systems and Control Letters, 25, 1995,63–73.
  6. [6] X. Chen & H. Kano, State observer for a class of nonlinear sys-tems and its application to machine vision, IEEE Transactionson Automatic Control, 49(11), 2004, 2085–2091.
  7. [7] W.E. Dixon, Y. Fang, D.M. Dawson, & T.J. Flynn, Range iden-tification for perspective vision systems, IEEE Transactionson Automatic Control, 48(12), 2003, 2232–2238.
  8. [8] L. Ma, Y. Chen, & K.L. Moore, Range identification for per-spective dynamic system with single homogeneous observation,Proc. IEEE Int. Conf. Robotics and Automation, New Orleans,LA, 2004, 5207–5211.
  9. [9] X. Hu & T. Ersson, Active state estimation of nonlinearsystems, Automatica, 40, 2004, 2075–2082.
  10. [10] R. Abdursul, H. Inaba, & B. Ghosh, Nonlinear observers forperspective time-invariant linear systems, Automatica, 40(3),2004, 481–490.
  11. [11] D. Karagiannis & A. Astolfi, A new solution to the problemof range identification in perspective vision systems, IEEETransactions on Automatic Control, 50(12), 2005, 2074–2077.
  12. [12] A.D. Luca, G. Oriolo, & P.R. Giordano, Feature depth ob-servation for image-based visual servoing: Theory and exper-iments, International Journal of Robotics Research, 27(10),2008, 1093–1116.
  13. [13] R.Y. Tsai & T.S. Huang, Estimating three-dimensional motionparameters of a rigid planar patch, IEEE Transactions onAcoustic, Speech, and Signal Processing, ASSP-29(6), 1981,1147–1152.
  14. [14] S. Gupta, D. Aiken, G. Hu, & W.E. Dixon, Lyapunov-basedrange and motion identification for a nonaffine perspectivedynamic system, Proc. American Control Conf., Minneapolis,MN, 2006, 4471–4476.
  15. [15] O. Dahl, F. Nyberg, & A. Heyden, Nonlinear and adaptiveobservers for perspective dynamic systems, Proc. AmericanControl Conf., New York, NY, 2007, 1966–1971.
  16. [16] D. Braganza, D.M. Dawson, & T. Hughes, Euclidean positionestimation of static features using a moving camera with knownvelocities, Proc. IEEE Int. Conf. Decision and Control, NewOrleans, LA, 2007, 2695–2700.
  17. [17] Euclidean position estimation of static features using amoving camera with known velocities Clemson Univer-sity CRB, Technical Report CU/CRB/3/9/07/2, 2007,http://www.ces.clemson.edu/ece/crb/publictn/tr.htm.
  18. [18] N. Nath, D. Braganza, D.M. Dawson, & T. Burg, Rangeidentification for perspective vision systems: A positionbased approach, Clemson University CRB, Technical ReportCU/CRB/5/22/09/1, 2009, http://www.ces.clemson.edu/ece/crb/publictn/tr.htm.
  19. [19] O. Faugeras, Three-dimensional computer vision (Cambridge,MA: MIT Press, 1993).
  20. [20] E. Malis & F. Chaumette, 2 1/2 D visual servoing withrespect to unknown objects through a new estimation schemeof camera displacement, International Journal of ComputerVision, 37(1), 2000, 79–97.
  21. [21] M. Krstic, I. Kanellakopoulos, & P. Kokotovic, Nonlinear andadaptive control design (New York, NY: John Wiley and Sons,1995).
  22. [22] M.D. Queiroz, D. Dawson, S. Nagarkatti, & F. Zhang,Lyapunov-based control of mechanical systems (Boston, MA:Birkhauser, 1999).
  23. [23] J.J.E. Slotine & W. Li, Applied nonlinear control (EnglewoodCliffs, NJ: Prentice Hall, 1991).

Important Links:

Go Back