R. Das, D.K. Bhattacharyya, and J.K. Kalita

View Full Paper


  1. [1] D. Stekel, Microarray bioinformatics (Cambridge, UK:Cambridge University Press, 2005).
  2. [2] R. Das, D.K. Bhattacharyya, & J.K. Kalita, A new approachfor clustering gene expression time series data, InternationalJournal of Bioinformatics Research and Applications, 5 (3),2009, 310–328.
  3. [3] J.B. McQueen, Some methods for classification and analysisof multivariate observations, Proceedings of the Fifth BerkeleySymposium Mathematics Statistics and Probability, 1, 1967,281–297.
  4. [4] J.C. Bezdek, Pattern recognition with fuzzy objective functionalgorithms (New York: Plenum Press, 1981).
  5. [5] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan,E. Dmitrovsky, E.S. Lander, & T.R. Golub, Interpretingpatterns of gene expression with self-organizing maps: Methodsand application to hematopoietic differentiation, Proceedingsof National Academy of Sciences, 96 (6), 1999, 2907–2912.
  6. [6] M. Eisen, P. Spellman, P. Brown, & D. Botstein, Cluster analy-sis and display of genome-wide expression patterns, Proceedingsof National Academy of Sciences, 95, 1998, 14863–14868.
  7. [7] J. Dopazo & J.M. Carazo, Phylogenetic reconstruction usingan unsupervised neural network that adopts the topology ofa phylogenetic tree, Journal Molecular of Evolution, 44, 1997,226–233.
  8. [8] A. Bhattacharya & R. De, Divisive correlation clusteringalgorithm (DCCA) for grouping of genes: Detecting varyingpatterns in expression profiles. Bioinformatics, 24 (11), 2008,1359–1366.
  9. [9] G. Shu, B. Zeng, Y.P. Chen, & O.H. Smith, Performanceassessment of kernel density clustering for gene expressionprofile data, Comparative and Functional Genomics, 4, 2003,287–299.
  10. [10] D. Jiang, J. Pei, & A. Zhang, DHC: A density-based hierarchicalclustering method for time series gene expression data, Proc.of BIBE2003: 3rd IEEE International Symposium on Bioin-formatics and Bioengineering, Bethesda, Maryland, 2003, 393.
  11. [11] R.A. Jarvis & E.A. Patrick, Clustering using a similaritymeasure based on shared nearest neighbors, IEEE Transactionson Computers, 11, 1973, 1025–1034.
  12. [12] J. Herrero, A. Valencia, & J. Dopazo, A hierarchical unsuper-vised growing neural network for clustering gene expressionpatterns, Bioinformatics, 17, 2001, 126–136.
  13. [13] A. Ben-Dor, R. Shamir, & Z. Yakhini, Clustering gene ex-pression patterns. Journal of Computational Biology, 6 (3–4),1999, 281–297.
  14. [14] R. Sharan & R. Shamir, Click: A clustering algorithm withapplications to gene expression analysis, Proc. of 8th Interna-tional Conference on Intelligent Systems for Molecular Biology,AAAI Press, Menlo Park, California, 2000.
  15. [15] A. Bellaachia, D. Portnoy, Y. Chen, & A.G. Elkahloun, E-cast:A data mining algorithm for gene expression data, Proc. ofthe BIOKDD02: Workshop on Data Mining in Bioinformatics(with SIGKDD02 Conference), Edmonton, Alberta, 2002, 49.
  16. [16] L.J. Heyer, S. Kruglyak, & S. Yooseph, Exploring expressiondata: Identification and analysis of co-expressed genes, GenomeResearch, 9 (11), 1999, 1106–1115.
  17. [17] U. Maulik & S. Bandyopadhyay, Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification,IEEE Transactions on Geoscience and Remote Sensing, 41 (5),2003, 1075–1081.
  18. [18] S. Bandyopadhyay, U. Maulik, & A. Mukhopadhyay, Multi-objective genetic clustering for pixel classification in remotesensing imagery, IEEE transactions on Geoscience and RemoteSensing, 45 (5), 2007, 1506–1511.
  19. [19] S. Bandyopadhyay, A. Mukhopadhyay, & U. Maulik, Animproved algorithm for clustering gene expression data, Bioin-formatics, 23 (21), 2007, 2859–2865.
  20. [20] U. Maulik, A. Mukhopadhyay, & S. Bandyopadhyay, Com-bining pareto-optimal clusters using supervised learning foridentifying co-expressed genes, BMC Bioinformatics, 10 (27),2009.
  21. [21] A. Ben-Dor, B. Chor, R. Karp, & Z. Yakhini, Discoveringlocal structure in gene expression data: The order-preservingsubmatrix problem, Proc. of the 6th Annual InternationalConf. on Computational Biology, ACM Press, New york, USA,2002, 49–57.
  22. [22] M. Ester, H.P. Kriegel, J. Sander, & X. Xu, A density-basedalgorithm for discovering clusters in large spatial databaseswith noise, Proc. of International Conference on KnowledgeDiscovery in Databases and Data Mining (KDD-96), Portland,Oregon, 1996, 226–231.
  23. [23] J.L. DeRisi, V.R. Iyer, & P.O. Brown, Exploring the metabolicand genetic control of gene expression on a genomic scale,Science, 278, 1997, 680–686.67
  24. [24] R.J. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway,L. Wodicka, T.G. Wolfsberg, A.E. Gabrielian, D. Landsman,D.J. Lockhart, & R.W. Davis, A genome-wide transcriptionalanalysis of the mitotic cell cycle, Molecular Cell, 2 (1), 1998,65–73.
  25. [25] X. Wen, S. Fuhrman, G.S. Michaels, D.B. Carr, S. Smith, J.L.Barker, & R. Somogyi, Large-scale temporal gene expressionmapping of central nervous system development, Proceedingsof National Academy of Science, 95 (1), 1998, 334–339.
  26. [26] P. Reymonda, H. Webera, M. Damonda, & E.E. Farmera,Differential gene expression in response to mechanical woundingand insect feeding in arabidopsis, Plant Cell, 12, 2000, 707–720.
  27. [27] V.R. Iyer, M.B. Eisen, D.T. Ross, G. Schuler, T. Moore,J. Lee, J.M. Trent, L.M. Staudt, J.J. Hudson, M.S. Boguski,D. Lashkari, D. Shalon, D. Botstein, & P.O. Brown, The tran-scriptional program in the response of the human fibroblaststo serum, Science, 283, 1999, 83–87.
  28. [28] P.T. Spellman, M.Q. Sherlock, G. Zhang, V.R. Iyer, K. Anders,M.B. Eisen, P.O. Brown, D. Botstein, & B. Futcher, Com-prehensive identification of cell cycle-regulated genes of theyeast saccharomyces cerevisiae by microarray hybridization,Molecular Biology of the Cell, 9 (12), 1998, 3273-3297.
  29. [29] R. Sharan, A. Maron-Katz, & R. Shamir, Click and expander:A system for clustering and visualizing gene expression data,Bioinformatics, 19 (14), 2003, 1787–1799.
  30. [30] P. Rousseeuw, Silhouettes: A graphical aid to the interpretationand validation of cluster analysis, Journal of ComputationalApplied and Mathematics, 20, 1987, 153–165.
  31. [31] F. Gibbons & F. Roth, Judging the quality of gene expressionbased clustering methods using gene annotation, GenomeResearch, 12, 2002, 1574–1581.

Important Links:

Go Back