M.S. Widyan∗ and R.E. Hanitsch∗∗


  1. [1] E. Spooner & A.C. Williamson, Direct-coupled, permanentmagnet generators for wind turbine applications, IEE Procead-ings Electric Power Application 143(1), 1996, 1–8.
  2. [2] A. Grauers, Design of direct-driven permanent-magnet gener-ators for wind turbine, Doctoral Dissertation, Chalmers Uni-versity of Technology, School of Electrical and ComputingEngineering, G¨oteborg, Sweden, 1996.
  3. [3] P. Lampola, Directly driven, low-speed permanent-magnet gen-erators for wind power applications, Ph.D. Thesis, Labora-tory of Electromechanics, Helsinki University of Technology,Finland, 2000.
  4. [4] R. Hanitsch & G. Korouji, Design and constructing of apermanent magnet wind energy generator with a new topology,KOMEL Conf., Poland, 2004, 63–66.
  5. [5] M.S. Widyan, Design, optimization, construction and testof rare-earth permanent-magnet electrical machines with newtopology for wind energy applications, Doctoral Dissertation,Institute of Energy and Automation Technology, Berlin Uni-versity of Technology, Germany, 2006.62
  6. [6] M. Stiebler & O. Okla, A permanent-magnet toroid windgenerator, Proc. Int. Conf. on Electrical Machines (ICEM’92),Vol. 3, 1992, Manchester, UK, 1043–1047.
  7. [7] F. Caricchi, F. Crescimbini, O. Honorati, & E. Santini, Per-formance evaluation of an axial-flux PM generator, Proc. In-ternational Conf. on Electrical Machines (ICEM’92), Vol. 2,1992, Manchester, UK, 761–765.
  8. [8] L. S¨oderlund, J.-T. Eriksson, J. Salonen, H. Vihri¨al¨a, & R.Per¨al¨a, A permanent-magnet generator for wind applications,IEEE Transactions on Magnetism, 32(4), 1996, 2389–2392.
  9. [9] E. Muljadi, C.P. Butterfield, & Y.-H. Wan, Axial flux mod-ular permanent-magnet generator with a toroidal winding forwind-turbine applications, IEEE Transations on Industry Ap-plications, 35(4), 1999, 831–836.
  10. [10] H. Weh, Transverse-flux machines in drive and generator ap-plications, Proc. IEE Symposium on Electric Power Engi-neering (Stockholm Power Tech), Stockholm, Sweden, InvitedSpeakers’s Session, 1995, 75–80.
  11. [11] Magnetic materials, www.udri.udayton.edu/UDRI_Extranet/News/news0696.htr, UDRI News, June 1998.
  12. [12] J.M.D. Coey, Rare-earth iron permanent magnets (Oxford:Clarendon Press, 1996).
  13. [13] M.S. Widyan & R.E. Hanitsch, A radial-flux low-speed high-energy permanent-magnet electrical machine prototype withnew topology, Advanced Electromechanical Motion Systems(Electromotion) Journal, 13(3), 2006, 193–205.
  14. [14] R.E. Hanitsch & M.S. Widyan, Design, construction and testof a permanent-magnet prototype machine for wind energyapplications, 8th Int. Conf. Electrical Machines and Systems(ICEMS’05), Nanjing, China, 27–29 September 2005.
  15. [15] R.E. Hanitsch & M.S. Widyan, Design and construction ofa low-speed rare-earth permanent-magnet wind-energy con-verter with new configuration, 6th Symposium don AdvancedElectromechanical Motion Systems (Electromotion 2005), Lau-sanne, Switzerland, 27–29 September 2005.
  16. [16] P. Kundur, Power system stability and control (New York:McGraw-Hill, Inc., 1994).Appendix AFET: finite element techniqueFE: finite elementφ: linkage fluxf: frequencyN: total number of turns per phasen: rotational speed in rpmE: no-load induced voltageid, iq: d-axis and q-axis components ofsynchronous generator currentsifd, ikd: d-axis field and damper winding currentsikq: q-axis damper winding currentM: angular momentum constant of the turbineand generator rotorsra: phase resistance of the armature of thesynchronous generatorrfd, rkd: field and d-axis damper winding resistancesrkq: q-axis damper winding resistancePm: mechanical powerQ: reactive powerVo: terminal voltage of the generatorXafd, d-axis mutual reactances between armatureXakd, and field, armature and damper windingXfkd: and field and damper windingXakq: q-axis mutual inductance between armatureand damper windingXd, Xq: d-axis and q-axis synchronous reactancesXffd: d-axis field total reactanceXkkd, d-axis and q-axis total damperXkkq: windings reactancesδg: rotor angle of generatorωo: synchronous speed (rad/s)ωg: rotor speed of generatorα: temperature coefficient of resistance of theconductor material, for copperα = 0.004041/◦Cra(T): conductor resistance at temperature Tra(To): conductor resistance at room temperatureof 20◦C

Important Links:

Go Back