RADIAL CONTROL DESIGN FOR A CLASS OF NONLINEAR SYSTEMS

Z. Sangela ji∗ and S.P. Banks∗∗

References

  1. [1] S.P. Banks, Mathematical theories of nonlinear systems (Lon-don: Prentice-Hall, 1988).
  2. [2] H.K. Khalil, Nonlinear systems (NY: Macmillan, 1992).
  3. [3] D.S. Naidu, Optimal control systems (New York: CRC Press,2002).
  4. [4] H.W. Knobloch, A. Isidori, & D. Flokerzi, Topics in controltheory, DMV seminar band 22 (Berlin: Birkh¨auser, 1993).
  5. [5] J. Backa, S.G. Cheongb, H. Shimb, & J.H. Seob, Nonsmoothfeedback stabilizer for strict-feedback nonlinear systems thatmay not be linearizable at the origin, Systems and ControlLetters, 56, 2007, 742–752.
  6. [6] A.G. Lukyanov & V.I. Utkin, Method of reducing equations fordynamic systems to a regular form, Automation and RemoteControl, 42, 1981, 413–420.
  7. [7] V.I. Utkin, Sliding modes in control and optimisation (Berlin:Springer-Verlag, 1992).
  8. [8] C.M. Lin & C.F. Hsu, Recurrent-neural-network-based adap-tive backstepping control for induction servomotor, IEEETransaction on Indutrial Electronics, 52, 2005, 1677–1684.
  9. [9] A.S.I. Zinober, Variable structure and Lyapunov control (Lon-don: Springer Verlag, 1994).
  10. [10] M. Arif, T. Ishihara, & H. Inooka, Intelligent learning con-trollers for nonlinear systems using radial basis neural networks,Control and Intelligent Systems, 32(2), 2004, 1318–1324.
  11. [11] M. Benyakhlef & L. Radouane, Adaptive fuzzy control of a classof decentralized nonlinear systems and unknown dynamics,Control and Intelligent Systems, 35(1), 2007, 1637–1642.
  12. [12] N. Essounbouli, A. Hamzaoui, & J. Zaytoon, An improvedrobust adaptive fuzzy controller for MIMO systems, Controland Intelligent Systems, 34(1), 2006, 1350–1417.
  13. [13] S.P. Banks, Stabilisation of nonlinear systems using the as-sociated angular system, Proc. 14th World IFAC Congress,Beijing, 1999.
  14. [14] F. Colonius & W. Kliemann, Stability radii and Lyapunovexponents, in D. Hinrichsen & B. Martensson (Eds.), Controlof uncertain systems, (Boston: Birkh¨auser, 1990) 19–55.150
  15. [15] F. Colonius & W. Kliemann, The Lyapunov spectrum offamilies of time-varying matrices, Transactions of the AmericanMathematical Society, 348, 1996, 4389–4408.

Important Links:

Go Back