A STABLE HIERARCHICAL FUZZY CONTROL DESIGN FOR CERTAIN NON-LINEAR SYSTEMS BASED ON INPUT–OUTPUT PASSIVITY THEORY

C. Xu∗ and Y.C. Shin∗∗

References

  1. [1] J.B. Kiszka, M.M. Gupta, & P.N. Nikiforuk, Energetic stabilityof fuzzy dynamic systems, IEEE Transactions on Systems,Man, and Cybernetics, SMC-15 (6), 1985, 783–792.
  2. [2] S. Chand & S. Hansen, Energy based stability analysis of afuzzy roll controller design for a flexible aircraft wing, Proc.IEEE Conf. on Decision and Control, Tampa, FL, 1989,705–709.
  3. [3] G. Langari & M. Tomizuka, Stability of fuzzy linguistic controlsystems, Proc. of the 29th Conf. on Decision and Control,Honolulu, HI, 1990, 2185–2190.
  4. [4] K. Tanaka & M. Sugeno, Stability analysis of fuzzy systemsusing Lyapunov’s direct method, Proceedings of North Amer-ican Fuzzy Information Processing Society (NAFIPS ), NewYork, NY, 1990, 133–136.
  5. [5] K. Tanaka & M. Sugeno, Stability analysis and design of fuzzycontrol systems, Fuzzy Sets and Systems, 45, 1992, 135–156.
  6. [6] K. Tanaka & M. Sano, Concept of stability margin for fuzzysystems and design of robust fuzzy controllers, IEEE Interna-tional Conf. Fuzzy Systems, San Francisco, CA, 1993, 29–34.
  7. [7] L.X. Wang & J.M. Mendel, Fuzzy basis functions, universalapproximation, and orthogonal least-squares learning, IEEETransactions on Neural Networks, 3 (5), 1992b, 807–814.
  8. [8] L.X. Wang, Fuzzy systems are universal approximators, Proc.of IEEE International Conf. on Fuzzy Systems, San Diego,CA, 1992c, 1163–1170.
  9. [9] K.L. Tang & R.J. Mulholland, Comparing fuzzy logic withclassical control designs, IEEE Transactions on Systems, Man,Cybernetics, 17 (6), 1987, 1085–1087.
  10. [10] M. Maeda & S. Murakami, Stability analysis of fuzzy controlsystems using phase planes, Japanese Journal of Fuzzy Theoryand System, 3 (2), 1991, 149–160.
  11. [11] J. Aracil, A. Ollero, & A. Gar´cia-Cerezo, Stability indices for theglobal analysis of expert control systems, IEEE Transactionson Systems, Man, and Cybernetics, 19 (5), 1989, 998–1007.
  12. [12] S.S. Farinwata, D. Filev, & R. Langari, Fuzzy control synthesisand analysis (John Wiley & Sons, LTD, 2000).
  13. [13] J. Aracil & F. Gordillo, Stability issues in fuzzy control(Physica-Verlag. A Springer-Verlag Company, 2000).
  14. [14] G. Calcev, Some remarks in the stability of mamdani fuzzycontrol systems, IEEE Transactions on Fuzzy Systems, 6 (3),1998, 436–442.
  15. [15] H. Ying, Practical design of nonlinear fuzzy controllers withstability analysis for regulating processes with unknown math-ematical models, Automatica, 30 (7), 1994, 1185–1195.
  16. [16] C. Xu & Y.C. Shin, Design of a multi-level fuzzy controller fornonlinear processes and stability analysis, IEEE Transactionson Fuzzy Systems, 13 (6), 2005, 761–778.
  17. [17] J.-J.E. Slotine, Applied nonlinear control (Englewood Cliffs,NJ: Prentice-Hall, 1991).
  18. [18] H.K. Khalil, Nonlinear systems (Upper Saddle River, NJ:Prentice-Hall, 2002).
  19. [19] E.M.N. L´opez, Dissipativity and passivity-related properties innonlinear discrete-time systems, Ph.D. Dissertation, Universi-dad Polit´ecnica de Catalu˜na, 2002.
  20. [20] G. Ferrari-Trecate, F.A. Cuzzola, D. Mignone, & M. Morari,Analysis of discrete-time piecewise affine and hybrid systems,Automatica, 38 (12), 2002, 2139–2146.
  21. [21] J.Y. Hung, N.G. Albritton, & F. Xia, Nonlinear control of amagnetic bearing system, Mechatronics, 13 (6), 2003, 621–637.
  22. [22] B. Guo, A. Jiang, X. Hua, & A. Jutan, Nonlinear adaptivecontrol for multivariable chemical processes, Chemical Engi-neering Science, 56, 2001, 6781–6791.

Important Links:

Go Back