STABILIZING FIRST-ORDER CONTROLLERS WITH DESIRED STABILITY REGION

¨¨ K. Saadaoui∗ and A.B. Ozguler∗∗

References

  1. [1] E.D. Sontag, Mathematical control theory: Deterministic finitedimensional systems Second Edition (New York: Springer,1998).
  2. [2] A. Datta, M.T. Ho, & S.P. Bhattacharyya, Structure andsynthesis of PID controllers (New York: Springer-Verlag,2000).
  3. [3] M. Vidyasagar, Control system synthesis: a factorizationapproach (Cambridge, Massachussets: MIT press, 1985).
  4. [4] W.M. Haddad & D.S. Bernstein, Controller design with regionalpole constraints, IEEE Transactions on Automatic Control,37(1), 1992, 54–69.
  5. [5] A.A. Abdul-Wahab & M.A. Zohdy, Eigenvalue clustering insubregions of the complex plane, International Journal ofControl, 48, 1988, 2527–2538.
  6. [6] A.A. Mohammed, A new optimal root-locus technique fro LQRdesign, Control and Intelligent Systems, 35(1), 2007, 15–23.
  7. [7] M. Benrejeb, P. Borne, & F. Laurent, Sur une application de laforme en fl`eche `a l’analyse des processus, RAIRO Automatique,16(2), 1982, 133–146.
  8. [8] P. Borne & M. Benrejeb, On the representation and thestability study of large scale systems, International Journal ofComputers, Communications & Control, Supplementary Issue:Proceedings of ICCCC2008, 3, 2008, 55–66.
  9. [9] Y.J. Pan & J. Gu, Remote stabilization of a class of linearsystems and its robust stability analysis, Control and IntelligentSystems, 35(1), 2007, 86–94.
  10. [10] L.S. Shieh, H.M. Dib, & S. Ganesan, Linear quadratic regu-lators with eigenvalue placement in a specified region, Auto-matica, 24, 1988, 819–823.
  11. [11] B. Wittenmark, R.J. Evans, & Y.C. Soh, Constrained poleplacement using transformation and LQ-design, Automatica,23, 1987, 767–769.
  12. [12] R.N. Tantaris, L.H. Keel, & S.P. Bhattacharyya, Stabilizationof continuous time systems by first-order controllers, Proc.10th Mediterranean Conference on Control and Automation,Lisbon, Portugal, 2002.
  13. [13] R.N. Tantaris, L.H. Keel, & S.P. Bhattacharyya, Stabiliza-tion of discrete-time systems by first-order controllers, IEEETransactions on Automatic Control, 48(5), 2003, 858–860.
  14. [14] R.N. Tantaris, L.H. Keel, & S.P. Bhattacharyya, H∞ designwith first-order controllers, Proc. 42nd IEEE Conference onDecision and Control, Hawii, USA, 2003, 2276–2281.
  15. [15] R.N. Tantaris, L.H. Keel, & S.P. Bhattacharyya, H∞ designwith first-order controllers, IEEE Transactions on AutomaticControl 51(8), 2006, 1343–1347.
  16. [16] P. Yu & Z. Wu, An exact solution to the stabilization of discretesystems using a first-order controller, IEEE Transactions onAutomatic Control 50(9), 2005, 1375–1379.
  17. [17] K. Saadaoui & A.B. ¨Ozg¨uler, On the set of all stabilizing first-order controllers, Proc. American Control Conference ACC’03,Denver, Colorado, 2003.
  18. [18] K. Saadaoui & A.B. ¨Ozg¨uler, A new method for the computa-tion of all stabilizing controllers of a given order, InternationalJournal of Control, 78(1), 2005, 14–28.
  19. [19] M.T. Ho, Synthesis of H∞ PID controllers: A parametricapproach, Automatica, 39, 2003, 1069–1075.

Important Links:

Go Back