S.H. Park, C.Y. Bae, H.K. Jung, H.K. Kim, and K.Y. Park


  1. [1] M. Okamoto, M. Ishikawa, K. Suzuki, & H. Ikeda, Computer simulation of phenomena associated with hot gas in puffer-type gas circuit breaker, IEEE Trans. on Power Delivery, 6 (2), 1991, 833–839. doi:10.1109/61.131142
  2. [2] Xiao-bin Li, Qi-Ping Wang, Yi-Bin Li, & Yong Yang, Numerical analysis of flow field and the dynamic properties of arc in the interrupting chamber of an SF6 puffer circuit breaker, IEEE Trans. on Plasma Science, 25 (5), 1997, 982–985. doi:10.1109/27.649611
  3. [3] K.Y. Park & M.T.C. Fang, Mathematical modeling of SF6 puffer circuit breakers I: High Current Region, IEEE Trans. on Plasma Science, 24 (2), 1996, 490–502. doi:10.1109/27.510015
  4. [4] X. Chen, Z. Ma, & P. Siarry, Theoretical and experimental study on the opening characteristic of puffer circuit breakers, IEE Proc. Electric Power Applications, 147 (2), 2000, 141–145. doi:10.1049/ip-epa:20000065
  5. [5] S. Yanabu, H. Mizoguchi, H. Ikeda, K. Suzuki, & M. Toyoda, Development of novel hybrid puffer interrupting chamber for SF6 gas circuit breaker utilizing self-pressure-rise phenomena by arc, IEEE Trans. on Power Delivery, 4 (1), 1989, 355–361. doi:10.1109/61.19224
  6. [6] L.S. Frost et al., Composition and transport properties of SF6 and their use in a simplified enthalpy flow model, Proc. IEEE, 59, 1971, 474–485.

Important Links:

Go Back