Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression

Ali Al-Yacoub, Sara sharifzadeh, Niels Lohse, Zahid Usman, Yee Goh, and Michael Jackson


force and torque compensation;, Support Vector Regression (SVR), Random Forests (RF), Industrial robots


Haptics, as well as force and torque measurements, are increasingly gaining attention in the fields of kinesthetic learning and robot Learning from demonstration (LfD). For such learning techniques, it is essential to obtain accurate force and torque measurements in order to enable accurate control. However, force and torque measurements using a 6-axis force and torque sensor mounted at the end effector of an industrial robot are known to be corrupted due to the robots internal forces, gravity, un-modelled dynamics and nonlinear effects. This paper presents an evaluation of two techniques, SVR and Random Forests, to recover the external forces and accurately selected possible contact situations by estimating a robots internal forces. The performance of the learned models have been evaluated using different performance metrics and comparing them with respect to the features contained in the input space. Both SVR and Random Forests require low computational complexity without intensive training over the operational space under the given ssumptions. In addition, these methods do not need data to be available online. The SVR and Random Forests models are experimentally validated using Motoman SDA10D dual-arm industrial robot controlled by Robot Operating System (ROS). The experiments showed that force and torque compensation based on Random Forests has outperformed Support Vector Regression.

Important Links:

Go Back

Rotating Call For Paper Image