Fusion Strategies for Neural Learning Algorithms using Evolutionary and Discrete Gradient Approaches

R. Ghosh, J. Yearwood, M. Ghosh, and A. Bagirov (Australia)


Evolutionary Algorithm, Discrete Gradient, Neuralnetwork


In this paper we investigate different variants for hybrid models using the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. The Discrete Gradient method has the advantage of being able to jump over many local minima and find very deep local minima. However, earlier research has shown that a good starting point for the discrete gradient method can improve the quality of the solution point. Evolutionary algorithms are best suited for global optimisation problems. Nevertheless they are cursed with longer training times and often unsuitable for real world application. For optimisation problems such as weight optimisation for ANNs in real world applications the dimensions are large and time complexity is critical. Hence the idea of a hybrid model can be a suitable option. In this paper we propose different fusion strategies for hybrid models combining the evolutionary strategy with the discrete gradient method to obtain an optimal solution much quicker. Three different fusion strategies are discussed: a linear hybrid model, an iterative hybrid model and a restricted local search hybrid model Comparative results on a range of standard datasets are provided for different fusion hybrid models.

Important Links:

Go Back